www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - 4 aus 6 z. T. versch. Tafeln
4 aus 6 z. T. versch. Tafeln < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

4 aus 6 z. T. versch. Tafeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:50 Mi 30.08.2006
Autor: Ienstien

Aufgabe
Man hat 1 Tafel Milchschokolade, 2 Tafeln Nussschokolade und 3 Tafeln schwarze Schokolade zur Auswahl. Ich möchte 4 Tafeln kaufen. Wie viele Möglichkeiten gibt es?
Gib dann auch eine allgmeine Formel (mit Herleitung) für dieses Problem an.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.math.unizh.ch/fachverein/forum/detail.jsp?FORUM=1045
http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=62311&start=0&lps=461492#v461492

Diese Aufgabe habe ich mir selbst ausgedacht.
Da die Reihenfolge unwesentlich ist, handelt es sich um eine Kombination. Allerdings ist es nicht die stinknormale "Kombination mit Wiederholung", da sich nicht alle Elemente wiederholen dürfen, und sie können sich auch nicht beliebig wiederholen, sondern nur begrenzt.

Hat jemand des Rätsels Lösung?

Und weiss jemand (mit Herleitung) die allgemeine Formel für ein solches Problem? Ich finde sie in keinem Lehrbuch! :(

Meine Lösungsansätze:

- Betrachte das Problem als Kombination ohne Wiederholung (6 Elemente, 4 Plätze), und versuche, die wiederholten Fälle wegzudividieren. Ich erkenne aber keine Regelmässigkeit hinter den Wiederholungsfällen.

- Betrachte das Problem als Permutation mit Wiederholung, und versuche irgendwie, die Reihenfolge unwesentlich zu machen... Ist aber auch nicht so einfach...

        
Bezug
4 aus 6 z. T. versch. Tafeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mi 30.08.2006
Autor: DirkG

Mit einer allgemeinen Formel kann ich auch nicht dienen, nur mit einer mühsamen Heransgehenweise, wie man das Problem rekursiv in den Griff kriegt. So ähnlich, wie die Antwort, die du im MathePlanet gekriegt hast:

Du hast 3 Typen Schokoladen, und nimmst eine Fallunterscheidung nach einem Typ vor, z.B. Milchschokolade:

1.Fall: 0 Milchschokolade in der Auswahl: verbleibt 4 aus 2N+3S
2.Fall: 1 Milchschokolade in der Auswahl: verbleibt 3 aus 2N+3S

In den Einzelfällen verbleiben nur noch zwei Schokoladentypen, ggfs. macht man eine weitere Unterfallunterscheidung...

Ist mühsam, ich weiß, aber man kommt zum Ziel. Was besseres fällt mir jetzt auch nicht ein.


P.S.: Manchmal (aber nicht hier) kann man den Berechnungsaufwand reduzieren, wenn man über das Komplement geht. Wenn im vorliegenden Fall z.B. 3mal Milchschokolade und jeweils 4mal Nuss- und schwarze Schokolade zur Verfügung gestanden hätten, dann kann man sich zunächst mal nicht um diese Beschränkungen scheren und schlicht die Kombinationen von 4 aus 3 Elementen mit Wiederholung berechnen. Dann hätte man die korrekte Anzahl, falls auch 4 Milchschokoladen zur Auswahl wären. Sind es aber nicht, also muss man die eine Auswahl von genau 4 Milchschokoladen abziehen: [mm] $\binom{3+4-1}{4}-1=15-1=14$ [/mm]


Gruß,
Dirk

Bezug
                
Bezug
4 aus 6 z. T. versch. Tafeln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:07 Mi 30.08.2006
Autor: Ienstien

Vielen Dank für deine Antwort und Anregung!

Ich habe mir auch einen anderen Lösungsansatz überlegt (bin aber nicht zum Ziel gekommen). Die Idee ist, dass ich die Schoko-Tafeln der Reihe nach anordne, und dann die ersten 4 in der Reihe nehme. Dann muss ich aber irgendwie die Anordnung berücksichtigen, bzw. fallen lassen.

1. Mache eine "Permutation mit Wiederholung", mit allen Schokoladentafeln:

MNNSSS
MNSSSN
etc.

... das gibt insgesamt [mm] \bruch{7!}{2!*3!} [/mm] Anordnungen, oder allgemein [mm] \bruch{(m_1+m_2+m_3+...+m_k)!}{m_1*!m_2!*m_3!*...*m_k!} [/mm]

Dann würde ich die ersten 4 in der Reihe nehmen. Ich hätte genau dann zwei gleiche Fälle bzw. Kombinationen erwischt, wenn in den ersten 4 Elementen genau ein N vorkämen, oder höchstens 2 S. (Oder allgemein: Wenn ein Element mit [mm] m_i \not= [/mm] 1 höchstens [mm] m_i [/mm] - 1 mal vorkäme).

Ich müsste dann irgendwie herausfinden, wieviele solche Fälle das wären, und sie dann subtrahieren... Aber wie gesagt, ich bin nicht drauf gekommen, wie man die Anzahl dieser Fälle bestimmt.

Gibt es für diese Problemstellung in der Fachliteratur tatsächlich keine allgemeine Lösungsformel? (So wie bei der "Permutation mit Wiederholung" oder so?)

Bezug
                        
Bezug
4 aus 6 z. T. versch. Tafeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mi 30.08.2006
Autor: Ienstien

Ich habe auch noch folgendes herausgefunden:

Ich habe zunächst systematisch alle Fälle per Hand aufgelistet, um zu sehen, wieviel das Resultat (einer allfälligen Formel) geben sollte.

In diesem Beispiel (1 x M, 2 x N, 3 x S, 4 auswählen) bekomme ich das Resultat, indem ich die Anzahl Permutationen der 6 Elemente durch 3 dividiere.

In einem abgeänderten Beispiel (1 x M, 3 x N, 3 x S, 4 auswählen) bekomme ich das Resultat, indem ich die Anzahl Permutationen der 7 Elemente durch 5 dividiere.

In einem nochmals abgeänderten Beispiel (1 x M, 2 x N, 3 x S, 5 auswählen) bekomme ich das Resultat, indem ich die Anzahl Permutationen der 6 Elemente durch 2 dividiere.

Ich finde aber keinen Zusammenhang, wie sich dieser Faktor ändert...

Bezug
                        
Bezug
4 aus 6 z. T. versch. Tafeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 01.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de