www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Allg. Frage zur e-Funktion
Allg. Frage zur e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Frage zur e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Sa 28.10.2006
Autor: TryingHard

Hallo,

ich habe eine kleine Frage zun der e-Funktion. Ich habe im Internet schon recht viel gesucht, aber keine passende Antwort gefunden:

Also: Kann ich [mm] e^{x^2} [/mm] irgendwie vereinfachen? Wenn dort [mm] e^{2x} [/mm] stehen würde, wüsste ich ja, wie man die Ableitungen davon bestimmt, aber leider ist dem ja nicht so.

Vielleicht weiß auch jemand eine gute, verständliche Seite, wo ich mir da einiges zu durchlesen könnte, damit ich nicht immer so blöde Fragen hier stellen muss.


Meine eigentliche Funktion heißt $ [mm] f(x)=e^{x^2}-1 [/mm] $
Diese muss ich untersuchen. Aber ohne Aleitungen komme ich ja nicht weit.
Zuerst hatte ich halt [mm] f'(x)=2e^{x^2} [/mm] gedacht, aber das ist ja nur die Ableitung von [mm] f(x)=e^{2x}-1 [/mm]


Ich bin dankbar für jede Hilfe,

LG TryingHard

        
Bezug
Allg. Frage zur e-Funktion: Kettenregel anwenden
Status: (Antwort) fertig Status 
Datum: 13:06 Sa 28.10.2006
Autor: Loddar

Hallo TryingHard!


Den Ausdruck [mm] $e^{x^2}$ [/mm] kann man nicht weiter vereinfachen, außer zu: [mm] $\left(e^x\right)^x$ [/mm] ... aber das hilft Dir nicht wirklich weiter.


Für die ableitung von [mm] $e^{x^2}$ [/mm] must Du die MBKettenregel anwenden mit [mm] $e^{(...)}$ [/mm] als äußere Funktion und $(...) \ = \ [mm] x^2$ [/mm] als innere Funktion.


Damit solltest Du dann erhalten:

[mm] $\left( \ e^{x^2} \ \right)' [/mm] \ = \ [mm] e^{(...)}*(...)' [/mm] \ = \ [mm] e^{x^2}*2x [/mm] \ = \ [mm] 2x*e^{x^2}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Allg. Frage zur e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 28.10.2006
Autor: TryingHard

Danke!

Also ist dann dementsprechend die zweite Ableitung:

[mm] f''(x)=2*e^{x^2}+2x*2x*e^{x^2} [/mm]
[mm] f''(x)=e^{x^2}*(2+4x^2) [/mm]

Und die dritte sieht dann so aus?:

[mm] f'''(x)=(e^{x^2}+2*2x*e^{x^2})+(8x*e^{x^2}+4x^2*2x*e^{x^2}) [/mm]


LG TryingHard

Bezug
                        
Bezug
Allg. Frage zur e-Funktion: teilweise richtig
Status: (Antwort) fertig Status 
Datum: 18:28 Sa 28.10.2006
Autor: informix

Hallo TryingHard,

> Also ist dann dementsprechend die zweite Ableitung:
>  
> [mm]f''(x)=2*e^{x^2}+2x*2x*e^{x^2}[/mm]
>  [mm]f''(x)=e^{x^2}*(2+4x^2)[/mm]

[mm]f''(x)=e^{x^2}*(2+4x^2) = 2*e^{x^2}*(1+2x^2)[/mm] [daumenhoch]

>  
> Und die dritte sieht dann so aus?:
>  
> [mm]f'''(x)=(e^{x^2}+2*2x*e^{x^2})+(8x*e^{x^2}+4x^2*2x*e^{x^2})[/mm]

hier stimmt was nicht; ich erhalte: $f'''(x) = [mm] 4x*e^{x^2}(2x^2+3)$ [/mm] (sagt Derive ;-))

>  
>
> LG TryingHard


Gruß informix


Bezug
                                
Bezug
Allg. Frage zur e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Sa 28.10.2006
Autor: TryingHard

Hmm, danke für die Antwort!

Könntest du mir denn bitte die Schritte zeigen, wie du zur dritten Ableitung gekommen bist, damit ich sehe wo ich meinen Fehler gemacht habe.



Danke


LG TryingHard

Bezug
                                        
Bezug
Allg. Frage zur e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Sa 28.10.2006
Autor: M.Rex

Hallo

Du hast ja korrekterweise:

[mm] f''(x)=\underbrace{2\cdot{}e^{x^2}}_{u}\cdot{}\underbrace{(1+2x^2)}_{v} [/mm]

Wenn du das jetzt ableitest, erhältst du mit der Produktregel:

[mm] f'''(x)=\underbrace{4xe^{x²}}_{u'}*\underbrace{(1+2x²)}_{v}+\underbrace{2e^{x²}}_{u}*\underbrace{4x}_{v'} [/mm]
[mm] =4xe^{x²}+8x³e^{x²}+8xe^{x²} [/mm]
[mm] =e^{x²}*(4x+8x³+8x) [/mm]
[mm] =e^{x²}(8x³+12x) [/mm]
[mm] (=4xe^{x²}(2x²+3), [/mm] wie Derive vorschägt, ich finde aber die vorherige Version besser)

Marius

Bezug
        
Bezug
Allg. Frage zur e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 28.10.2006
Autor: Teufel

Hallo!
Kann es sein, dass die Ableitung von [mm] f(x)=e^{g(x)} [/mm] immer [mm] f'(x)=g'(x)*e^{g(x)} [/mm] ist? So würde man auch auf die [mm] f'(x)=2x*e^{x²} [/mm] kommen. Und bei anderen Funktionen klappt das auch. Allerdings hab ich das eben nur mal durch probieren bemerkt, also weiß ich nicht, ob's Ausnahmen gibt.



Bezug
                
Bezug
Allg. Frage zur e-Funktion: stimmt so!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Sa 28.10.2006
Autor: Loddar

Hallo Teufel!


> Kann es sein, dass die Ableitung von [mm]f(x)=e^{g(x)}[/mm] immer [mm]f'(x)=g'(x)*e^{g(x)}[/mm] ist?

[daumenhoch] Ganz genau! Denn ist ja exakt die Anwendung der oben erwähnten MBKettenregel.


Gruß
Loddar


Bezug
                        
Bezug
Allg. Frage zur e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Sa 28.10.2006
Autor: Teufel

Oh ok ;) wusste ich nicht, wir hatten Ketten- & Quotientenregel noch nicht in der Schule. Unsere Lehrerin hat gesagt, dass wir uns erst einmal so durchschlagen sollen ;)

Bezug
                
Bezug
Allg. Frage zur e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Sa 28.10.2006
Autor: MontBlanc

Hallo,

Ja Teufel du hast recht es ist so. Auch bei [mm] e^{\wurzel{x}} [/mm] ist die ableitung [mm] f'(x)=\bruch{1}{2\wurzel{x}}*e^{\wurzel{x}} [/mm]
Das nur als Beispiel, aber wenn ich mich nicht komplett irre is das wohl möglich =)

Bis denn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de