www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Analysis III - Stammfunktion
Analysis III - Stammfunktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis III - Stammfunktion: Tipp, Idee, Lösung
Status: (Frage) beantwortet Status 
Datum: 13:01 Di 23.01.2007
Autor: dagilein

Aufgabe
Es sei a=(a1, a2) [mm] \in \IR^2, [/mm] r>0, f=(f1, f2): [mm] \IR^2 \supset [/mm] Kr(a) --> [mm] B(\IR^2; \IR) \cong \IR^1*^2 [/mm] stetig dfb. Es gilt [mm] \partial1f2 [/mm] = [mm] \partial2f1 [/mm]
Die Funktion F: [mm] \IR^2 [/mm] --> [mm] \IR [/mm] definiert durch
F(x):= [mm] \integral_{a1}^{x1}{f1(t,a2) dt} [/mm] + [mm] \integral_{a2}^{x2}{f(x1,t) dt} [/mm] ,
für (x= (x1,x2) [mm] \in [/mm] Kr(a)
Meine Frage ist: Wie kann man dieses Integral graphisch veranschaulichen????



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kann man dieses Integral graphisch veranschaulichen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analysis III - Stammfunktion: Tipp
Status: (Frage) für Interessierte Status 
Datum: 11:29 Do 25.01.2007
Autor: dagilein

Aufgabe
  Es sei a=(a1, a2) $ [mm] \in \IR^2, [/mm] $ r>0, f=(f1, f2): $ [mm] \IR^2 \supset [/mm] $ Kr(a) --> $ [mm] B(\IR^2; \IR) \cong \IR^1\cdot{}^2 [/mm] $ stetig dfb. Es gilt $ [mm] \partial1f2 [/mm] $ = $ [mm] \partial2f1 [/mm] $
Die Funktion F: $ [mm] \IR^2 [/mm] $ --> $ [mm] \IR [/mm] $ definiert durch
F(x):= $ [mm] \integral_{a1}^{x1}{f1(t,a2) dt} [/mm] $ + $ [mm] \integral_{a2}^{x2}{f(x1,t) dt} [/mm] $ ,
für (x= (x1,x2) $ [mm] \in [/mm] $ Kr(a)
Meine Frage ist: Wie kann man dieses Integral graphisch veranschaulichen????



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kann man dieses Integral graphisch veranschaulichen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Frage ist: Wie kann man dieses Integral graphisch veranschaulichen????


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Analysis III - Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Do 25.01.2007
Autor: Herby

Hallo dagilein,

herzlich [willkommenmr]

bitte keine Doppelpostings hier im Forum, deine andere identische Frage ist noch offen.


Liebe Grüße
Herby

Bezug
        
Bezug
Analysis III - Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 25.01.2007
Autor: Event_Horizon

Also, das ist ein Wegintegral!

Du hast eine 2D-Fläche auf der eine Funktion f(x,y) definiert ist.

Darauf gibt es zwei Punkte [mm] $(a_1,a_2)$ [/mm] und [mm] $(x_1,2_2)$ [/mm]

Die Integration verläuft auf einem Pfad vom ersten zum zweiten Punkt. Allerdings nicht direkt, sondern so:

Erst nur in x-Richtung von [mm] a_1 [/mm] nach [mm] x_1, [/mm] das heißt, [mm] a_2 [/mm] wird als y-Komponente erstmal beibehalten.

Im zweiten Integral gehts ebenso von der neuen Koordinate [mm] $(x_1,a_2)$ [/mm] zum Endpunkt - hierbei wird die neue x-Koordinate natürlich festgehalten.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de