www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Beweis Teilmenge
Beweis Teilmenge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Teilmenge: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 21.10.2008
Autor: fecit

Aufgabe
A und B für zwei Mengen sei: A [mm] \times [/mm] B={(a,b):a [mm] \in [/mm] A,b [mm] \in [/mm] B}
(A [mm] \times B)^{c}=(A^{c} \times [/mm] B) [mm] \cup [/mm] (A [mm] \times B^{c}) \cup (A^{c} \times B^{c} [/mm] )

Also das Problem hab ich schon Graphisch gelöst und verstanden. Jetzt muss ich das ganze noch Formal machen. Ich habe vor die linke Seite mit A zu benennen und die Rechte mit B, um dann zu zeigen das A [mm] \subset [/mm] B ist und B [mm] \subset [/mm] A.

Aber welche Bedingung muss erfüllt sein damit ich sagen kann das A eine Teilmenge aus B ist?



Edit: A=(A [mm] \times B)^{c} [/mm]

x [mm] \in [/mm] (A [mm] \times B)^{c} \Rightarrow [/mm] x [mm] \not\in [/mm] (A [mm] \times [/mm] B)
--> [mm] (A^{c} \times [/mm] B) = x [mm] \in A^{c} [/mm] ;x [mm] \not\in [/mm] B
      (A [mm] \times B^{c} [/mm] ) = x [mm] \not\in [/mm] A ;x [mm] \in B^{c} [/mm]
      [mm] (A^{c} \times B^{c} [/mm] ) = x [mm] \in A^{c} [/mm] ; x [mm] \in B^{c} [/mm]

Reicht das um zu zeigen das A [mm] \subset [/mm] B ist?

        
Bezug
Beweis Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 21.10.2008
Autor: angela.h.b.


> A und B für zwei Mengen sei: A [mm]\times[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B={(a,b):a [mm]\in[/mm] A,b

> [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B}

>  (A [mm]\times B)^{c}=(A^{c} \times[/mm] B) [mm]\cup[/mm] (A [mm]\times B^{c}) \cup (A^{c} \times B^{c}[/mm]
> )
>  Also das Problem hab ich schon Graphisch gelöst und
> verstanden. Jetzt muss ich das ganze noch Formal machen.
> Ich habe vor die linke Seite mit A zu benennen und die
> Rechte mit B, um dann zu zeigen das A [mm]\subset[/mm] B ist und B
> [mm]\subset[/mm] A.

Hallo,

verwende nicht denselben Buchstaben für zwei verschiedene Sachen. Das gibt ganz schnell Chaos. (Es gibt ja auch gnug Buchstaben, so daß es kein Problem ist, ab und zu einen frischen zu nehmen.

In der Sache allerdings hast Du recht. Du mußt zeigen

1.  (A [mm]\times B)^{c} ) \subseteq (A^{c} \times[/mm] B) [mm]\cup[/mm] (A [mm]\times B^{c}) \cup (A^{c} \times B^{c})[/mm]

2. [mm] (A^{c} \times [/mm] B) [mm]\cup[/mm] (A [mm]\times B^{c}) \cup (A^{c} \times B^{c})[/mm] [mm] \subseteq [/mm]  (A [mm][mm] \times B)^{c} [/mm] )


> Edit: A=(A [mm]\times B)^{c}[/mm]
>  
> x [mm]\in[/mm] (A [mm]\times B)^{c} \Rightarrow[/mm] x [mm]\not\in[/mm] (A [mm]\times[/mm] B)
>  --> [mm](A^{c} \times[/mm] B) = x [mm]\in A^{c}[/mm] ;x [mm]\not\in[/mm] B

>        (A [mm]\times B^{c}[/mm] ) = x [mm]\not\in[/mm] A ;x [mm]\in B^{c}[/mm]
>        
> [mm](A^{c} \times B^{c}[/mm] ) = x [mm]\in A^{c}[/mm] ; x [mm]\in B^{c}[/mm]
>  
> Reicht das um zu zeigen das A [mm]\subset[/mm] B ist?

Deine Überlegungen hier sind richtig, auch wenn sie nicht ganz richtig aufgeschrieben sind. Ein Beweis ist es noch nicht.

Den Beweis für 1. gehen wir jetzt mal an.

Zu zeigen:  
1.  (A [mm]\times B)^{c} ) \subseteq (A^{c} \times[/mm] B) [mm]\cup[/mm] (A [mm]\times B^{c}) \cup (A^{c} \times B^{c})[/mm]

Man zeig das elementweise, indem man zeigt, daß jedes Element aus  (A [mm]\times B)^{c} )auch in (A^{c} \times[/mm] B) [mm]\cup[/mm] (A [mm]\times B^{c}) \cup (A^{c} \times B^{c})[/mm]  liegt.

Beweis: Wir nehmen nun ein Element her. Da es sich hier um Mengen handelt, die Paare von Elementen enthalten, ist unser Element so ein Paar.

Sei [mm] (x,y)\in [/mm] (A [mm][mm] \times B)^{c} [/mm] )

==> [mm] (x,y)\not\in [/mm] AxB   (nach Def. des Komplementes)

==> [mm] x\not\in [/mm] A oder [mm] y\not\in [/mm] B

==>  [mm] (x\not\in [/mm] A und [mm] (y\not\inB [/mm] oder [mm] y\in [/mm] B)) oder [mm] (y\not\in [/mm] B und [mm] (x\not\in [/mm] A oder [mm] x\in [/mm] A))

==> ...     (Wenn Du Dir gut überlegt hast, daß das von Zeile zu Zeile stimmt, kannst Du weitermachen und die Sache zum Ende bringen.)


Dann die andere Richtung.

Gruß v. Angela


Bezug
                
Bezug
Beweis Teilmenge: fertig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Di 21.10.2008
Autor: fecit

danke! ich probier das gleich mal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de