www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Federwaage
Federwaage < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Federwaage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Sa 23.09.2006
Autor: Klio

Hallo ihr,

könnt ihr mir die Bewegungsgleichung (Schwingungsgleichung) einer harmonischen Schwingung aufzeigen? Als Hinweis wurde uns angegeben, dass wir den Ort als Nullpunkt der x-Achse, bei dem sich das Gewicht in Ruhe befinden würde, wählen sollen. Vielen Dank für eure Hilfe,

lg Ramona

        
Bezug
Federwaage: Sinus
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 23.09.2006
Autor: Infinit

Hallo Ramona,
bei einer harmonischen Schwingung folgt die Auslenkung eines Körpers aus der Ruhelage einer Sinusfunktion, das Ganze ist abhängig von der Zeit, also kann der allgemeine Ansatz lauten
$$ x = [mm] x_0 \sin \omega [/mm] t [mm] \, [/mm] . $$
[mm] x_0 [/mm] ist hierbei die Amplitude der Schwingung. Leitet man diese Größe zweimal nach der Zeit ab, so kommt man auf eine Aussage zur Beschleunigung mit
$$ a = - [mm] a_0 \sin \omega [/mm] t [mm] \, [/mm] .$$
Dies ist genau das Charakteristische einer harmonischen Schwingung, nämlich dass die Beschleunigung proportional zur Auslenkung x ist und dieser entgegengerichtet.
In der Physik hast Du häufig die Kräfte, die auf einen Körper wirken, und mit Hilfe von [mm] F = ma [/mm] kann man die Beschleunigung ausrechnen und zweimaliges Hochintegrieren nach der Zeit ergibt den Verlauf der harmonischen Schwingung.  
Vergleichst Du die beiden Gleichungen oben miteinander, so erhälst Du eine Aussage über die Beschleunigung in Abhängigkeit von der Auslenkung x.
$$ a = - [mm] \bruch{a_0}{x_0} [/mm] x [mm] \, [/mm] ,$$
was man der Praktikalibität halber auch als
$$ a = [mm] -\omega^2 [/mm] x $$ schreibt.
Bei der Federwaage gilt für die Rückstellkraft
$$ F = [mm] -Dx\, [/mm] . $$
Mit
$$ F = ma = - m [mm] \omega^2 [/mm] x $$
bekommst Du [mm] D = m \omega^2 [/mm] und hieraus lässt sich die Kreisfrequenz Omega bestimmen. Die Schwingungsdauer T ergibt sich dann durch
$$ T = [mm] \bruch{2 \pi}{\omega}\, [/mm] . $$
Damit hast Du eigentlich alle Größen beisammen, um die harmonische Schwingung berechnen zu können.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de