www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwert
Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 20.01.2005
Autor: johann1850

Hi ich soll beweisen  [mm] \limes_{n\rightarrow\infty} \wurzel[n]{n}=1 [/mm]
Hab überhaupt keine Ahnung, wie ich anfangen soll

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fehlerhaft Status 
Datum: 22:06 Do 20.01.2005
Autor: Fabian

Hallo Johann

Du kannst doch für  [mm] \wurzel[n]{n}=n^{\bruch{1}{n}} [/mm] schreiben

Beweis:


[mm] \limes_{n\rightarrow\infty} \wurzel[n]{n}= \limes_{n\rightarrow\infty}n^{\bruch{1}{n}}=(\infty)^{0}=1 [/mm]

So würde ich es machen!

Gruß Fabian



Bezug
                
Bezug
Grenzwert: Definiert ?
Status: (Frage) beantwortet Status 
Datum: 22:28 Do 20.01.2005
Autor: Faenol

Hi!

Mal 'ne Frage dazu: Ist denn [mm] (infty)^{0} [/mm] denn überhaupt definiert ?
Ich kenn nur dass x [mm] \in \IR x^{0}=1 [/mm] ist,... ???

Ich würd das so machen...

[mm] \limes_{n\rightarrow\infty} [/mm] exp(1/n*log(n))

[mm] \limes_{y\rightarrow\0} [/mm] exp(y*log(1/y))=exp(0)=1

wobei man dann das Problem =0*(infty) = ??? hat..


Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Do 20.01.2005
Autor: Wurzelpi

Hi!

Du landest beim selben Problem.
So kann man das nicht lösen.

0*unendlich oder sonstige komische Ausdrücke dieser Art sind zu vermeiden.

Schau in meiner Antwort nach.
Dort zeige ich, wie man das vermeiden kann!



Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Do 20.01.2005
Autor: Wurzelpi

Hallo!

Nirgends (ausser bei numerischen Funktionen, die hier nicht vorliegen) ist 0*unendlich definiert.
Wer sagt denn, dass 0*unendlich = 0 ist?
So geht das nicht!

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Do 20.01.2005
Autor: Wurzelpi

Okay,richtig ist es so:

Man benutze das Sandwich Lemma, d.h. man schliesst die Folge [mm]n^{1/n}[/mm] ein.
Gesucht ist also eine Folge, die kleiner als [mm]n^{1/n}[/mm] ist und eine Folge die grösser ist als [mm]n^{1/n}[/mm], die aber beide den Grenzwert 1 haben.

Eine untere Grenze ist natürlich die 1 mit Grenzwert 1. Hier braucht man nicht arbeiten.
Jedoch bei der oberen Grenze. Diese lautet:

[mm]1+\wurzel{2/(n-1)}[/mm] mit Grenzwert 1.

Also hat die Folge [mm] (n^{1/n})_n [/mm] den Grenzwert 1.

Wie kommt man auf die obere Grenze?
Nicht ganz leicht.

[mm]n=(1+n^{1/n}-1)^n[/mm].
Das kann man als binomische Formel (allgemeine) darstellen und nach unten abschätzen zu [mm] {n \choose 2}(n^{1/n}-1)^2[/mm].

[mm] {n \choose 2}(n^{1/n}-1)^2 <= 2/(n-1)[/mm].

Damit folgt dann:

[mm]1<= n^{1/n} <=1+\wurzel{2/(n-1)}[/mm].

So ist das formal korrekt!


Bezug
        
Bezug
Grenzwert: Alternativ
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:04 Fr 21.01.2005
Autor: Marcel

Hallo Johann1850,

alternativ mal ein Link, wo die Aufgabe schonmal bearbeitet wurde:
https://matheraum.de/read?t=29688&v=t

Viele Grüße,
Marcel

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Fr 21.01.2005
Autor: Karl_Pech

Hallo johann1850,


> Hi ich soll beweisen  [mm]\limes_{n\rightarrow\infty} \wurzel[n]{n}=1[/mm]


[m]\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{n} = \mathop {\lim }\limits_{n \to \infty } n^{\frac{1} {n}} = \mathop {\lim }\limits_{k \to 0} \left( {\frac{1} {k}} \right)^k = \mathop {\lim }\limits_{k \to 0} \frac{1} {{k^k }} = \frac{1} {{0^0 }} = \frac{1} {1} = 1[/m]



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de