www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Höhere Ableitung
Höhere Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhere Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 15.06.2006
Autor: papillon

Aufgabe
Gegeben sei die Funktion

f(x) = [mm] \bruch{(1+x)}{\wurzel{1-x}} [/mm]   ,   x<1

Berechnen Sie die 100. Ableitung!  



Ich habe zunächst den Bruch in ein Produkt zerlegt, und dann die Leibnizsche Formel angewendet, damit habe ich erhalten:

[mm] f^{(100)} [/mm] =  [mm] \vektor{100 \\ 0} [/mm] (1+x) [mm] (1-x)^{-\bruch{1}{2}}^{(100)} [/mm] +  [mm] \vektor{100 \\ 1} (1-x)^{-\bruch{1}{2}}^{(99)} [/mm]

Soweit, so gut.

Aber wie kann ich die 99./100. Ableitung von diesem wurzelterm bestimmen?

Ich habe folgenden ansatz durch betrachten der ersten vier ableitungen von [mm] (1-x)^{-\bruch{1}{2}} [/mm] erhalten:

[mm] (1-x)^{-\bruch{1}{2}}^{(n)} [/mm] = [mm] \bruch{1\*3\*5\*7....(2n-1)}{2^{n}} (1-x)^{-\bruch{2n+1}{2}} [/mm]

Aber wie kann ich dieses 1*3*5*7...(2n-1) so darstellen, dass man den Term für n=99 und n=100 ausrechnen kann?

Stimmt mein Ansatz soweit, oder habe ich eine einfachere MEthode übersehen?

Vielen Dank!

        
Bezug
Höhere Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Do 15.06.2006
Autor: Event_Horizon

"einfach so" wird man die Fakultät für ungrade Zahlen wohl nicht berechnen können. Aber wir haben als Ausdruck dafür immer !! benutzt. Also: 7!!=1*3*5*7 und 8!!=2*4*6*8.
Ich weiß aber nicht, ob das ein allgemeiner Ausdruck ist.

Ansonsten: Hast du mal die ersten Ableitungen gebildet? Ich bekomme

[mm] $f'=+\bruch{1}{2}\bruch{x-3}{(x-1)\wurzel{1-x}}$ [/mm]

[mm] $f''=-\bruch{1}{4}\bruch{x-7}{(x-1)^2\wurzel{1-x}}$ [/mm]

[mm] $f'''=+\bruch{3}{8}\bruch{x-11}{(x-1)^3\wurzel{1-x}}$ [/mm]

[mm] $f''''=-\bruch{15}{16}\bruch{x-15}{(x-1)^4\wurzel{1-x}}$ [/mm]

Mir scheint dahinter ein System zu stecken. Beim rechten Bruch kein Problem, beim linken sehe ich die Folge allerdings grade nicht. Auf jeden Fall wird wohl

[mm] $f^{(100)}=-A\bruch{x-399}{(x-1)^{100}\wurzel{1-x}}$ [/mm]

sein, wobei du das noch beweisen müßtest und auch noch das A herausbekommen müßtest.

Bezug
        
Bezug
Höhere Ableitung: zum Produkt
Status: (Antwort) fertig Status 
Datum: 14:36 Do 15.06.2006
Autor: mathemaduenn

Hallo papillion,
Auf eine Formel für das Produkt kann man folgendermaßen kommen.
(2n)! [mm] =\produkt_{i=1}^{n}{(2*i)}* \produkt_{i=1}^{n}{(2*i-1)} [/mm]
und [mm] \produkt_{i=1}^{n}{(2*i)} [/mm] kann man ja aufteilen:
[mm] \produkt_{i=1}^{n}{(2*i)}=\produkt_{i=1}^{n}{(2)}*\produkt_{i=1}^{n}{(i)}=2^n*n! [/mm]
Jetzt kannst Du dein Produkt nur durch Fakultäten berechnen.
viele Grüße
mathemaduenn

Bezug
        
Bezug
Höhere Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 15.06.2006
Autor: Leopold_Gast

Ich würde es so machen:

Setze

[mm]y = \frac{2}{t} - t \ \ \text{mit} \ \ t = \sqrt{1-x}[/mm]

Wann nun [mm]y^{(n)}[/mm] die [mm]n[/mm]-te Ableitung nach [mm]x[/mm] bezeichnet, so gilt wegen [mm]\frac{\mathrm{d}t}{\mathrm{d}x} = - \frac{1}{2 \, \sqrt{1-x}} = - \frac{1}{2t}[/mm] gemäß Kettenregel

[mm]y^{(1)} = \left( - \frac{2}{t^2} - 1 \right) \left( - \frac{1}{2t} \right) = \frac{1}{t^3} + \frac{1}{2t}[/mm]

[mm]y^{(2)} = \left( - \frac{3}{t^4} - \frac{1}{2t^2} \right) \left( - \frac{1}{2t} \right) = \frac{1 \cdot 3}{2^1 t^5} + \frac{1}{2^2 t^3}[/mm]

[mm]y^{(3)} = \left( - \frac{1 \cdot 3 \cdot 5}{2^1 t^6} - \frac{1 \cdot 3}{2^2 t^4} \right) \left( - \frac{1}{2t} \right) = \frac{1 \cdot 3 \cdot 5}{2^2 t^7} + \frac{1 \cdot 3}{2^3 t^5}[/mm]

Und jetzt sieht man, wie das weitergeht. Dabei ist fürs jeweilige Endergebnis jeweils noch [mm]t[/mm] durch [mm]t = \sqrt{1-x}[/mm] zu ersetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de