www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Informationsgehalt (Entropie?)
Informationsgehalt (Entropie?) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Informationsgehalt (Entropie?): Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:10 So 24.04.2005
Autor: Bastiane

Hallo ihr!
Ich bin mir nicht sicher, ob diese Frage hier im Stochastik-Forum richtig ist - wenn mir keiner helfen kann, ist aber auch nicht allzu schlimm. ;-)
Also erstmal die Aufgabe:

Gegeben sei ein aus drei Symbolen a,b,c bestehendes Alphabet. Das Symbol a tritt mit der Wahrscheinlichkeit [mm] p_1=0,2, [/mm] das Symbol b mit der Wahrscheinlichkeit [mm] p_2=0,5 [/mm] auf. Gegeben sei eine Nachricht N mit dem Informationsgehalt [mm] I_N=1,94986. [/mm] Geben Sie die Nachrichten an, um die es sich handeln könnte.

Ich habe mir dazu auch jetzt schon seit einiger Zeit Gedanken gemacht und viele Infos darüber gelesen...
Also was mir direkt einfiel war, dass die Wahrscheinlichkeit für das Symbol c [mm] p_3=0,3 [/mm] sein müsste, damit es zusammen 1 ergibt. Im Nachhinein habe ich mich aber gefragt, ob es nicht vielleicht auch noch irgendie ein Leerzeichen oder so geben könnte. Aber das müsste doch dann eigentlich im Alphabet enthalten sein, oder?
Dann frage ich mich, wie die auf so eine komische Zahl kommen - 1,94986 - muss mir das was sagen? Ist diese Zahl willkürlich? Muss man da nachher einfach alle möglichen Sachen ausprobieren, um auf diesen Informationsgehalt zu kommen?

So, und dann habe ich noch folgende Formeln gefunden:
Der Informationsgehalt einer Nachricht ist die Summer der Informationsgehalte der einzelnen Symbole - also:
[mm] I_N=I_1+I_2+I_3 [/mm]

Diese Formel habe ich irgendwo im Netz gefunden - ich finde sie recht logisch.

Nun ist der Informationsgehalt eines einzelnen Symbols: [mm] I=-ld\;p_i, [/mm] wobei ld der Logarithmus zur Basis 2 ist. (Diese Formel hatten wir in der Vorlesung und sie steht auch des Öfteren im Netz. :-))

Nun habe ich so aber mal [mm] I_N [/mm] berechnet und komme da auf [mm] I_N\approx [/mm] 2,32+1+1,7 und das ist ja wohl was ganz anderes, als angegeben war. Und es macht ja auch keinen Sinn, denn ich soll ja Nachrichten angeben, die den angegebenen Informationsgehalt haben, und so bekomme ich da ja gar nichts raus. :-(

So, und das letzte, was mir noch einfiel, ist, dass ich ja quasi so Sachen angeben soll wie: aaaaa oder abcbc oder so, oder? Aber irgendwas stimmt da irgendwo nicht, denn wie würde ich denn davon jetzt den Informationsgehalt berechnen? Wenn ich die I's von den einzelnen Symbolen immer addiere, erhalte ich ja ziemlich schnell immer größere Zahlen, und es soll doch nur 1,94986 herauskommen.

Ob mir vielleicht jemand auf die Sprünge helfen könnte?

Viele Grüße
Bastiane
[gutenacht]


        
Bezug
Informationsgehalt (Entropie?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:16 Mo 25.04.2005
Autor: Stefan

Liebe Christiane!

Du hast Recht, die Aufgabe ist mit diesem Informationsgehalt ;-) unlösbar.

Vermutlich hat der Aufgabensteller die Begriffe "Informationsgehalt" und "Entropie" verwechselt. Denn bei der Entropie müssen die Informationsgehalte noch mit den jeweiligen Eintrittswahrscheinlichkeiten multipliziert werden. Dann könnte es ja hinkommen.

Wenn, dann wäre übrigens deine letzte Idee die richtige gewesen...

Kannst du mich bitte aufklären, wenn du die Lösung der Aufgabe kennst? Danke!

Liebe Grüße
Stefan

Bezug
                
Bezug
Informationsgehalt (Entropie?): mit der Entropie:
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Mo 25.04.2005
Autor: Bastiane

Lieber Stefan!
Mit der Entropie-Formel hatte ich das auch schon versucht:
[mm] H\approx [/mm] -0,2*(-2,32)-0,5*(-1)-0,3*(-1,74)=0,464+0,5+0,522=1,468

Das wäre dann doch aber wieder ein festes Ergebnis, das nicht mit dem angegebenen übereinstimmt, und vor allem habe ich so immer noch keine Ahnung, um welche Nachrichten es sich handeln könnte. :-(

Viele Grüße
Christiane
[cap]


Bezug
        
Bezug
Informationsgehalt (Entropie?): Lösung
Status: (Antwort) fertig Status 
Datum: 19:20 Mo 25.04.2005
Autor: Stefan

Liebe Christiane!

Doch, mit der Entropie geht es einwandfrei!

Gesucht sind natürliche Zahlen [mm] $a_1,a_2,a_3$ [/mm] mit

$1,94986 [mm] \approx a_1 \cdot p_1 \cdot (-\log_2(p_1)) [/mm] + [mm] a_2 \cdot p_2 \cdot (-\log_2(p_2)) [/mm] + [mm] a_3 \cdot p_3 \cdot (-\log_2(p_3)) \approx a_1 \cdot [/mm] 0.46438 + [mm] a_2 \cdot [/mm] 0.5 + [mm] a_3 \cdot [/mm] 0.52109$.

Man sieht durch eine waches Auge oder viel Probieren, dass dies nur für

[mm] $a_1=2$, $a_2=1$ [/mm] und [mm] $a_3=1$ [/mm]

möglich ist.

Die möglichen Wörter sind also:

$aabc$, $aacb$, $abac$, $acab$, $abca$, $acba$, $bcaa$, $cbaa$, $baca$, $caba$, $baac$, $caab$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Informationsgehalt (Entropie?): Danke. :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mo 25.04.2005
Autor: Bastiane

Lieber Stefan!
> Gesucht sind natürliche Zahlen [mm]a_1,a_2,a_3[/mm] mit
>  
> [mm]1,94986 \approx a_1 \cdot p_1 \cdot (-\log_2(p_1)) + a_2 \cdot p_2 \cdot (-\log_2(p_2)) + a_3 \cdot p_3 \cdot (-\log_2(p_3)) \approx a_1 \cdot 0.46438 + a_2 \cdot 0.5 + a_3 \cdot 0.52109[/mm].

Dachte ich mir doch, dass man das noch irgendwie multiplizieren muss mit dem, was gesucht ist. Hatte nur keine Formel dafür gefunden und irgendwie kam ich nicht so wirklich drauf, wie genau ich es denn jetzt machen soll.
  

> Man sieht durch eine waches Auge oder viel Probieren, dass
> dies nur für
>  
> [mm]a_1=2[/mm], [mm]a_2=1[/mm] und [mm]a_3=1[/mm]
>  
> möglich ist.
> Die möglichen Wörter sind also:
>  
> [mm]aabc[/mm], [mm]aacb[/mm], [mm]abac[/mm], [mm]acab[/mm], [mm]abca[/mm], [mm]acba[/mm], [mm]bcaa[/mm], [mm]cbaa[/mm], [mm]baca[/mm], [mm]caba[/mm],
> [mm]baac[/mm], [mm]caab[/mm].

Danke - das hätte ich wahrscheinlich dann selber noch herausgefunden. ;-)

Viele Grüße
Christiane
[sunny]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de