www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Do 22.02.2007
Autor: AnAu

Aufgabe
[mm] $\int\bruch{1}{1+2,0267*10^{24}*e^{-0,02809t}}\,\mathrm{d}t$ [/mm]

Hallo,

Ich habe leider keinen Ansatz, wie ich dieses Integral lösen könnte.

Danke für Hilfe,

Andreas.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 22.02.2007
Autor: ullim

Hi,

die zu integrierende Funktion ist von der Form [mm] f(x)=\br{1}{1+ae^{bx}} [/mm]

substituiere mal [mm] t=e^{ax} [/mm] dann sollte es gehen.

mfg ullim

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Do 22.02.2007
Autor: AnAu

Dann wäre das doch [mm] $\bruch{1}{1+ae^{b*e^{ax}}}$, [/mm] oder?

Aber wie muss ich denn jetzt weiter vorgehen? Die Substitution haben wir nur mal kurz angeschnitten.

Dankeschön,

Andreas.

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Do 22.02.2007
Autor: ullim

Hi,

[mm] \integral_{}^{}{\br{1}{1+ae^{bx}} dx} [/mm] ist zu berechnen

[mm] t=e^{bx} \Rightarrow [/mm] dt=bt*dx also

[mm] dx=\br{dt}{bt} \Rightarrow [/mm]

[mm] \integral_{}^{}{\br{1}{1+ae^{bx}} dx}=\integral_{}^{}{\br{1}{1+at} \br{1}{bt}dt} [/mm] also gleich

[mm] \br{1}{b}\integral_{}^{}{\br{1}{1+at} \br{1}{t}}dt=\br{1}{b}\integral_{}^{}\left(\br{-a}{1+at}+\br{1}{t}\right)=\br{1}{b}\left(-ln(1+at)+ln(t)\right)=\br{1}{b}ln\left(\br{t}{1+at}\right)=\br{1}{b}ln\left(\br{e^{bx}}{1+ae^{bx}}\right) [/mm]

mfg ullim

Bezug
        
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Do 22.02.2007
Autor: AnAu

Aufgabe
b) Gesucht ist eine Funktion $g$ vom Typ [mm] $g(t)=\bruch{a*S}{a+(S-a)*e^{-Skt}}$, [/mm] deren Graph die Daten aus a) (zur Weltbevölkerung) gut annähert. Setzen sie $t=0$ für das Jahr 1950, $a=2,56$ (in Mrd.) für den Anfangswert, $S=11$ (in Mrd.) als Sättigungsgrenze und $g(50)=6,08$ (in Mrd.). Berechnen Sie hiermit bei einem logistischen Ansatz die Konstante $k$.

c) Zeigen Sie, dass sich für [mm] $1950\le t\le [/mm] 2050$ näherungsweise die Funktion $g$ mit [mm] $g(t)=\bruch{11}{1+2,0267*10^{24}*e^{-0,02809t}}$ [/mm] ergibt.

Hi noch mal,

Meine eigentliche Frage ist, wie ich auf die Funktion in c) komme. Die Funktion aus b) habe ich ohne Probleme herleiten können.

Die Fkt. aus b) lautet: [mm] $g(t)=\bruch{2,56*11}{2,56+(11-2,56)*e^{-11*0,00257*t}}$ [/mm]

Dankesehr,

Andreas.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Do 22.02.2007
Autor: leduart

Hallo Andreas
Da ich ja die daten nicht hab, aus denen du b geloest hast, kann ich nicht direkt helfen.
Wenn du deinen Exp. ausmultiplizierst, kommt dasselbe raus, wenn du Zaehler und Nenner allerdings durch 2,56 teilst, kommt vorn die gesuchte 1 aber die [mm] 10^{24} [/mm] ist nicht da
Allerdings ist die auch komisch, denn es hiesse ja [mm] g(t)\approx 10^{-24} [/mm] was ich zumindest mit g(50)=6 nicht verbinden kann!
Irgendwas an der Aufgabe muss falsch sein.

> b) Gesucht ist eine Funktion [mm]g[/mm] vom Typ
> [mm]g(t)=\bruch{a*S}{a+(S-a)*e^{-Skt}}[/mm], deren Graph die Daten
> aus a) (zur Weltbevölkerung) gut annähert. Setzen sie [mm]t=0[/mm]
> für das Jahr 1950, [mm]a=2,56[/mm] (in Mrd.) für den Anfangswert,
> [mm]S=11[/mm] (in Mrd.) als Sättigungsgrenze und [mm]g(50)=6,08[/mm] (in
> Mrd.). Berechnen Sie hiermit bei einem logistischen Ansatz
> die Konstante [mm]k[/mm].
>  
> c) Zeigen Sie, dass sich für [mm]1950\le t\le 2050[/mm]
> näherungsweise die Funktion [mm]g[/mm] mit
> [mm]g(t)=\bruch{11}{1+2,0267*10^{24}*e^{-0,02809t}}[/mm] ergibt.
>  Hi noch mal,
>  
> Meine eigentliche Frage ist, wie ich auf die Funktion in c)
> komme. Die Funktion aus b) habe ich ohne Probleme herleiten
> können.

Ich seh den Unterschied zw. b und c nicht? liegt vielleicht an den mangelnden Daten?  
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de