www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrale berechnen
Integrale berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 So 27.04.2008
Autor: Toni908

Aufgabe
berechnen sie folgende Integrale:

[mm] a)\integral_{}^{}{\bruch{1}{coshx} dx} [/mm]
[mm] b)\integral_{0}^{1}{\wurzel{1-x²} dx} [/mm]
[mm] c)\integral_{a}^{b}{\wurzel{tanx} dx} [/mm]

Hallo,

also bei a) müsste ich die Substitutionsregel anwenden oder? Welchen anfang könnte ich da nehmen?

[mm] b)\integral_{0}^{1}{(1-x²)^{1/2} dx}=\integral_{0}^{1}{1/2x*2/3(1-x²)^{3/2}=[(1/2*2/3)-0]}=1/3 [/mm]

c)hier fällt mir nichts weiter ein.

LG Toni

        
Bezug
Integrale berechnen: Aufgabe (b)
Status: (Antwort) fertig Status 
Datum: 15:26 So 27.04.2008
Autor: Loddar

Hallo Toni!


Was hast Du denn hier gerechnet? Verwende partielle Integration:

[mm] $$\integral{\wurzel{1-x^2} \ dx} [/mm] \ = \ [mm] \integral{\red{1}*\wurzel{1-x^2} \ dx}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 So 27.04.2008
Autor: Toni908

Hallo,

ich weis nicht ob ich das hier überhaupt richtig gemacht habe:
f(x)->F(x)
[mm] (1-x²)^{\bruch{1}{2}}=\bruch{1}{2}x*\bruch{2}{3}*(1-x²)^{\bruch{3}{2}} [/mm]

[mm] \integral_{a}^{b}{u(x)*v(x) dx} =[u(x)-V(x)]-\integral_{a}^{b}{u'(x)*V(x) dx} [/mm]

[mm] =\integral_{0}^{1}{1*(1-x²)^{\bruch{1}{2}} dx}=(1*(\bruch{1}{2}(1)*\bruch{2}{3}*(1-(1)²)^{\bruch{3}{2}})-(1*\bruch{1}{2}(0)*\bruch{2}{3}*(1-(0)²)^{\bruch{3}{2}})-\integral_{a}^{b}{u'(x)*V(x) dx} [/mm]

[mm] \integral_{a}^{b}{u'(x)*V(x) dx}=\integral_{0}^{1}{ \bruch{1}{2}x*\bruch{2}{3}*(1-x²)^{\bruch{3}{2}}}=1/3 [/mm]

so wie ich es oben schon gemacht habe

dann zusammengefasst: 1/3-1/3=0



Bezug
                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 So 27.04.2008
Autor: M.Rex

Hallo

Wenn du bei der partiellen Integration folgendes wählst, wirds sehr einfach.

[mm] \integral_{a}^{b}{u(x)\cdot{}v(x)dx}=[u(x)-V(x)]-\integral_{a}^{b}{u'(x)\cdot{}V(x)dx} [/mm]

Also hier:

[mm] \integral_{0}^{1}\underbrace{1}_{u}*\underbrace{\wurzel{1-x²}}_{v'} [/mm]
=...

Oder alternativ:

[mm] \integral_{0}^{1}\underbrace{1}_{v'}*\underbrace{\wurzel{1-x²}}_{u} [/mm]
=...

Einer der Wege führt relativ gut zum Ziel.

P.S: Hier mal die Skizze, daran erkennst du, dass das Integral nicht Null
ergibt.
[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Di 29.04.2008
Autor: patsch

zu b)
Ich komme mit Hilfe der partiellen Integration nicht zur Lösung. Ich habe es auch schon mit der der Substitutionsregel versucht, in dem ich x=cosh x gesetzt habe, aber auch damit habe ich kein erfolg.

mfg patsch

Bezug
                                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 29.04.2008
Autor: steppenhahn

b) mit partieller Integration:

[mm]\integral{\wurzel{1-x^{2}} dx}[/mm]

[mm]= \integral_{0}^{1}{\underbrace{1}_{u'}*\underbrace{\wurzel{1-x^{2}}}_{v} dx}[/mm]

[mm]= \underbrace{x}_{u}*\underbrace{\wurzel{1-x^{2}}}_{v} - \integral{\underbrace{x}_{u} * \underbrace{\bruch{1}{2*\wurzel{1-x^{2}}}*(-2x)}_{v'} dx}[/mm]

[mm]= x*\wurzel{1-x^{2}} + \integral{\bruch{x^{2}}{\wurzel{1-x^{2}}} dx}[/mm]

Der "Trick":

[mm]= x*\wurzel{1-x^{2}} + \integral{\bruch{1}{\wurzel{1-x^{2}}} - \bruch{1-x^{2}}{\wurzel{1-x^{2}}} dx}[/mm]

[mm]= x*\wurzel{1-x^{2}} + \integral{\bruch{1}{\wurzel{1-x^{2}}} - \wurzel{1-x^{2}} dx}[/mm]

[mm]= x*\wurzel{1-x^{2}} + \integral{\bruch{1}{\wurzel{1-x^{2}}} dx}- \integral{\wurzel{1-x^{2}} dx}[/mm]

Nun betrachtet man die gesamte partielle Integration als Gleichung und addiert auf beiden Seiten [mm] \integral{\wurzel{1-x^{2}} dx}: [/mm]

[mm]\integral{\wurzel{1-x^{2}} dx} = x*\wurzel{1-x^{2}} + \integral{\bruch{1}{\wurzel{1-x^{2}}} dx}- \integral{\wurzel{1-x^{2}} dx}[/mm]

[mm]\gdw 2*\integral{\wurzel{1-x^{2}} dx} = x*\wurzel{1-x^{2}} + \integral{\bruch{1}{\wurzel{1-x^{2}}} dx}[/mm]

[mm]\gdw \integral{\wurzel{1-x^{2}} dx} = \bruch{1}{2}*x*\wurzel{1-x^{2}} + \bruch{1}{2}*\integral{\bruch{1}{\wurzel{1-x^{2}}} dx}[/mm]

Bekanntermaßen ist

[mm]\integral{\bruch{1}{\wurzel{1-x^{2}}} dx} = \arcsin(x)[/mm], man erhält:

[mm]\gdw \integral{\wurzel{1-x^{2}} dx} = \bruch{1}{2}*x*\wurzel{1-x^{2}} + \bruch{1}{2}*\arcsin(x)[/mm].

Falls du b) mit Substitution probieren möchtest, solltest du [mm]x = \sin(u) \gdw u = \arcsin(x)[/mm] ausprobieren.

Bezug
        
Bezug
Integrale berechnen: Aufgabe (a)
Status: (Antwort) fertig Status 
Datum: 15:30 So 27.04.2008
Autor: Loddar

Hallo Toni!


Wende die Definition von [mm] $\cosh(x) [/mm] \ := \ [mm] \bruch{1}{2}*\left(e^x+e^{-x}\right)$ [/mm] an und substituiere anschließend $z \ := \ [mm] e^x$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Integrale berechnen: Aufgabe (c)
Status: (Antwort) fertig Status 
Datum: 15:46 So 27.04.2008
Autor: MathePower

Hallo Toni908,

> berechnen sie folgende Integrale:
>  
> [mm]a)\integral_{}^{}{\bruch{1}{coshx} dx}[/mm]
>  
> [mm]b)\integral_{0}^{1}{\wurzel{1-x²} dx}[/mm]
>  
> [mm]c)\integral_{a}^{b}{\wurzel{tanx} dx}[/mm]
>  Hallo,
>  
> also bei a) müsste ich die Substitutionsregel anwenden
> oder? Welchen anfang könnte ich da nehmen?
>  
> [mm]b)\integral_{0}^{1}{(1-x²)^{1/2} dx}=\integral_{0}^{1}{1/2x*2/3(1-x²)^{3/2}=[(1/2*2/3)-0]}=1/3[/mm]
>  
> c)hier fällt mir nichts weiter ein.

Verwende hier die Substitution [mm]z^{2}=\tan\left(x\right)[/mm]

Dann wird [mm]2z \ dz= 1+\tan^{2}\left(x\right) \ dx = 1+z^{4} \ dx[/mm]

[mm]\Rightarrow dx = \bruch{2z}{1+z^{4}} \ dz[/mm]

Für die dann anstehende Partialbruchzerlegung verwende dann:

[mm]1+z^{4}=\left(z^{2}+az+1\right)*\left(z^{2}-az+1\right)[/mm]

>  
> LG Toni

Gruß
MathePower

Bezug
                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Di 29.04.2008
Autor: patsch

Danke erstmal für die schnelle und ausführliche Anwort zur Aufg. b.

zu c)
Gibt es hier einen anderen Weg um diese Funktion zu integrieren, da ich mit der Partialbruchzerlegung nicht zurecht komme.

mfg patsch

Bezug
                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 29.04.2008
Autor: Marcel

Hallo,

> Danke erstmal für die schnelle und ausführliche Anwort zur
> Aufg. b.
>  
> zu c)
>  Gibt es hier einen anderen Weg um diese Funktion zu
> integrieren, da ich mit der Partialbruchzerlegung nicht
> zurecht komme.

weiß' ich, ehrlich gesagt, momentan nicht. Aber schließe doch solche Lücken:

[]http://www.mathematik.uni-dortmund.de/hm/hm1petii0607/partial.pdf

[]http://www.maschinenbau-fh.de/m_partialbruch.html

.
.
.

(Google: Stichwort Partialbruchzerlegung)

Das halte ich für wesentlich sinnvoller, als zu sagen: "Damit komme ich nicht zurecht." ;-)

Gruß,
Marcel

Bezug
                                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Di 29.04.2008
Autor: patsch

Die Partialbruchzerlegung an und für sich kann ich ja, aber bei dieser Aufgabe komme ich nicht klar, da die Nullstellen des Nennerpolynoms doch komplexe Zahlen sind. Gibt es wirklich keinen kürzeren Weg?

mfg patsch

Bezug
                                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 29.04.2008
Autor: MathePower

Hallo patsch,

> Die Partialbruchzerlegung an und für sich kann ich ja, aber
> bei dieser Aufgabe komme ich nicht klar, da die Nullstellen
> des Nennerpolynoms doch komplexe Zahlen sind. Gibt es
> wirklich keinen kürzeren Weg?

Ich fürchte nein.


Bestimme erstmal ein a, so daß gilt:

[mm]1+z^{4}=\left(z^{2}-az+1\right)*\left(z^{2}+az+1\right)[/mm]

Zerlege dann wie folgt:

[mm]\bruch{2z^{2}}{1+z^{4}}=\bruch{Az+B}{z^{2}-az+1}+\bruch{Cz+D}{z^{2}+az+1}[/mm]

Mit noch unbekannten Koeffienten A, B, C und D.

Diese unbekannten Koeffizienten bekommst Du durch einen []Koeffizientenvergleich heraus.

>  
> mfg patsch

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de