www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kettenregel im R^n
Kettenregel im R^n < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel im R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mi 10.05.2006
Autor: Sherin

Aufgabe
Seien  [mm] \alpha_{1}, \alpha_{2} \in \IR [/mm] und g: [mm] \IR^{2} \to \IR [/mm] definiert durch g(x,y) =  [mm] \wurzel{x^{4} + y^{2}}. [/mm] Sei f: [mm] \IR \to \IR [/mm] definiert duch f(t) = g [mm] (t^{\alpha_{1}}, t^{\alpha_{2}}). [/mm] Berechnen Sie zunächst  [mm] \bruch{d}{dt} [/mm] f(t) mit der Kettenregel und ohne direktes Einsetzen der Funktion g und überprüfen Sie dann Ihr Ergebnis durch Einsetzen.

Hallo..

Also ich sitze gerad an dieser Aufgabe, die partielle Ableitung mit Hilfe der Kettenregel von f(t) zu berechnen ist ja nicht das problem, aber wie genau soll man das denn machen ohne die Funktion einzusetzen?

Wäre euch dankbar, wenn ihr mir ein Tipp oder Ansatz dafür geben könntet!

Lg,
Sherin

        
Bezug
Kettenregel im R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mi 10.05.2006
Autor: MatthiasKr

Hallo Sherin,

also du hast eine funktion [mm] $g:\IR^2\to \IR$ [/mm] sowie eine kurve [mm] $h:\IR\to \IR^2$ [/mm] mit [mm] $h(t):=(t^{\alpha_1},t^{\alpha_2})$. [/mm] Du definierst nun [mm] $f(t)=(g\circ h)(t)=g(h(t))=g(t^{\alpha_1},t^{\alpha_2})$ [/mm]

Es gibt nun zwei methoden, die ableitung von $f$, also $f'(t)$, zu berechnen:

- direkt durch einsetzen

- durch die kettenregel. Die sagt nämlich

[mm] $\frac [/mm] d {dt} [mm] g(h(t))=\nabla [/mm] g [mm] (h(t))\cdot [/mm] h'(t)$, also äußere ableitung mal innere ableitung, ganz klassisch wie im eindimensionalen [mm] ($\nabla [/mm] g$ ist der gradient von $g$, das kennst du, oder?).
In der aufgabe sollst du beide varianten durchrechnen und zeigen, dass das gleiche rauskommt.

VG
Matthias


Bezug
                
Bezug
Kettenregel im R^n: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:06 Mi 10.05.2006
Autor: Sherin

Erstmal danke für die schnelle Antwort.. hab aber noch paar Fragen dazu:

Also [mm] \nabla [/mm] g ist doch [mm] (2x^3 [/mm] * [mm] (x^4+ y^2)^{- \bruch{1}{2}}, [/mm] y * [mm] (x^4+y^2)^{ -\bruch{1}{2}}) [/mm] oder?

h(t) = [mm] (t^{\alpha_{1}},t^{\alpha_{2}}), [/mm] aber was ist hier h'(t)? Das ist doch nicht [mm] (\alpha_{1}t^{\alpha_{1}-1}, \alpha_{2}t^{\alpha_{2}-1}), [/mm] oder?

Und wie genau rechne ich das [mm] \nabla [/mm] g (h(t)) * h'(t) dann aus? Irgendwie komme ich noch nicht so ganz mit dem mehrdimensonalem klar.. Und irgendwie glaube ich auch nicht, dass ich das jetzt alles hier richtig verstanden hab! Wäre echt froh, wenn mir das jemand erklären könnte!

Danke im Voraus!


Also ich habe das jetzt nochmal versucht zu verstehen..

meine ideen dazu wären jetzt:

h'(t) =  [mm] \pmat{ \alpha_{1} t^{\alpha_{1}-1} \\ \alpha_{2} t^{\alpha_{2}-1} } [/mm]

g'(t) = f'(h(t))  [mm] \circ [/mm] h'(t) = [mm] (D_{1}f D_{2}f) [/mm] * [mm] \pmat{ \alpha_{1} t^{\alpha_{1}-1} \\ \alpha_{2} t^{\alpha_{2}-1} } [/mm]
= [mm] D_{1}f \alpha_1 t^{\alpha_1-1} [/mm] + [mm] D_{2}f \alpha_2 t^{\alpha_2-1} [/mm]

Stimmt das so? Wenn ja, wie setze ich das jetzt ein um das zu überprüfen?

Bezug
                        
Bezug
Kettenregel im R^n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 12.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de