www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Kreisausschnitt Berechnung
Kreisausschnitt Berechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisausschnitt Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Mi 05.07.2006
Autor: timbalord

Aufgabe
Berechne mit nur zwei Werten alle Elemente eines Kreisausschnitts. Die zu berechnenden Werte lauten: A = Fläche, r = Radius, alpha = Winkel, s = Sekante, b = Bogen. Zwei von diesen Werten werden jeweils vorgegeben aus denen dann der Rest berechnet werden sollen.

Um diese Aufgabenstellung zu lösen, habe ich mir sämtliche Kombinationsmöglichkeiten aufgeschrieben und die mir bekannten Formeln soweit umgestellt.

Einzig und allein zwei von den 10 möglichen Kombinationen bereiten mir Probleme.

Ich habe keinerlei Lösungsansatz, um über die Fläche A und Sekante s oder über die Kombination Bogen b und Sekante s einen der anderen Werte zu ermitteln.

Sobald ich drei Werte habe wird es zum selbstläufer aus den anderen von mir aufgestellten Funktionen.

Ich danke schon mal im Voraus für hilfreiche Ratschläge

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreisausschnitt Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mi 05.07.2006
Autor: stevarino

Hallo

also bei Fläche und Sehne probiers so

A= [mm] \bruch{r^{2}*\pi* \alpha}{360} [/mm] und [mm] S=2*r*sin\alpha [/mm]

und bei Bogenlänge und Sehne

[mm] S=2*r*sin\alpha [/mm] und [mm] b=\bruch{r*\pi*\alpha}{180} [/mm]

jetzt r eliminieren und fertig

lg Stevo

Bezug
                
Bezug
Kreisausschnitt Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mi 05.07.2006
Autor: timbalord

So ganz kann ich dem nicht mehr folgen, da ich durch die Grübelei hier schon total durcheinander bin.

Wenn ich Fläche und Sekante gegeben habe, wie komme ich dann an die anderen Werte.

Genauso bei Bogen und Sekante?

Das sind ja die Werte, die ich bekommen habe!


Bezug
                        
Bezug
Kreisausschnitt Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mi 05.07.2006
Autor: stevarino

Hallo

Also zum ersten
Sehne und Sekante ist das selbe

Fläche, Sehne
Du drückst dir aus [mm] S=2*r*sin\alpha [/mm] r aus
[mm] r=\bruch{S}{2*sin\alpha} [/mm] und das setzt du jetzt in die Flächenformel [mm] A=\bruch{r^{2}*\pi* \alpha}{360} [/mm] ein jetzt hast nur mehr eine Unbekannte [mm] \alpha [/mm] die du dir ausdrücken kannst

Bogenlänge, Sehne
wieder r aus  [mm] S=2*r*sin\alpha [/mm] ausdrücken in die Bogenformel [mm] b=\bruch{r*\pi*\alpha}{180} [/mm] einsetzen und nach [mm] \alpha [/mm] auflösen

lg Stevo

Bezug
                                
Bezug
Kreisausschnitt Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mi 05.07.2006
Autor: timbalord

Könntest du mir das für eine Kombination einmal vorrechnen.

Ich hänge wirklich in den Seilen. Ich habe 8 von 10 Formeln umgestellt, nur hier habe ich einen kompletten Blackout!

Bezug
                                        
Bezug
Kreisausschnitt Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 06.07.2006
Autor: M.Rex

Hi,

Ich versuche mal, die Lösung von Stevarino übersichtlich hinzuschreiben.

Nehmen wir an, du hast die Fläche und die Sehne gegeben.

Dann gilt: S = 2 * r * sin [mm] (\alpha) \gdw [/mm] r = [mm] \bruch{S}{2 * sin(\alpha)} [/mm]

Dieses r kannst du jetzt in die Formel A = [mm] \bruch{\pi * r² * \alpha}{360}. [/mm]
Also hast du jetzt:

A = [mm] \bruch{\pi * S² * \alpha}{360 * 4 * sin²(\alpha)} [/mm]
Hieraus kannst du jetzt [mm] \alpha [/mm] berechnen.

Das Problem hierbei ist aber, dass [mm] sin(\alpha) [/mm] und [mm] \alpha [/mm] in einem Term vorkommen, also wäre es evtl. einfacher,
S = 2 * r * sin [mm] (\alpha) [/mm] nach [mm] \alpha [/mm] aufzulösen.

es gilt dann [mm] sin(\alpha) [/mm] = [mm] \bruch{S}{2r} \gdw \alpha [/mm] = [mm] arcsin(\bruch{S}{2r}) [/mm]

Das ganze kannst du jetzt in A = [mm] \bruch{\pi * r² * \alpha}{360} [/mm] einsetzen, also erhältst du A = [mm] \bruch{\pi * r² * arcsin(\bruch{S}{2r})}{360} [/mm] Hieraus müsstest du dann r berechnen.

Marius



Bezug
                
Bezug
Kreisausschnitt Berechnung: leichter gesagt als getan !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Mi 10.06.2009
Autor: Al-Chwarizmi


> Hallo
>  
> also bei Fläche und Sehne probiers so
>  
> A= [mm]\bruch{r^{2}*\pi* \alpha}{360}[/mm] und [mm]S=2*r*sin\alpha[/mm]
>  
> und bei Bogenlänge und Sehne
>  
> [mm]S=2*r*sin\alpha[/mm] und [mm]b=\bruch{r*\pi*\alpha}{180}[/mm]
>  
> jetzt r eliminieren und fertig
>  
> lg Stevo



Hallo Stevo,

das klingt gut, ist dann aber eben doch nicht
ganz so einfach. Wenn b und s gegeben sind,
haben wir (wenn [mm] \alpha [/mm] wirklich der ganze Zentri-
winkel des Sektors ist) die Gleichungen:

      (1)  $\ [mm] s=2*r*sin\left(\bruch{\alpha}{2}\right)$ [/mm]

      (2)  $\ [mm] b=r*\alpha$ [/mm]      (Winkel im Bogenmaß !)

r zu eliminieren bedeutet nun z.B., nach (2) zu
schreiben

        [mm] r=\bruch{b}{\alpha} [/mm]

und in (1) einzusetzen. Damit kommen wir auf:

       $\ [mm] s=2*\bruch{b}{\alpha}*sin\left(\bruch{\alpha}{2}\right)$ [/mm]

Wenn wir jetzt trotzdem noch den halben Zentri-
winkel  [mm] \varphi=\bruch{\alpha}{2} [/mm]  einführen, kommen wir für diesen
gesuchten Winkel auf die Gleichung:

      [mm] \bruch{sin(\varphi)}{\varphi}=\bruch{s}{b} [/mm]

Diese Gleichung für [mm] \varphi [/mm] ist, wenn  b und s gegeben
sind, eine sogenannte transzendente Gleichung.
Dies bedeutet, dass man sie nicht formal nach [mm] \varphi [/mm]
auflösen kann. Praktisch heißt dies, dass man sie
nur mit Näherungsverfahren approximativ lösen
kann !


Gruß     Al-Chwarizmi


Nachtrag:

Der Entwicklung eines solchen Näherungsverfahrens habe
ich mich inzwischen gewidmet und bin auf eine sehr brauch-
bare Lösung gestossen. Siehe diesen Artikel !


    


Bezug
                        
Bezug
Kreisausschnitt Berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Do 11.06.2009
Autor: moody

Hallo Al-Chwarizmi,

deine Hilfe kommt leider etwas spät, der Thread ist bereits > 1000 Tage alt. [kaffeetrinker]

lg moody

Bezug
                                
Bezug
Kreisausschnitt Berechnung: alte Hüte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Do 11.06.2009
Autor: Al-Chwarizmi


> Hallo Al-Chwarizmi,
>  
> deine Hilfe kommt leider etwas spät, der Thread ist bereits
> > 1000 Tage alt. [kaffeetrinker]
>  
> lg moody


... hab' ich gar nicht beachtet, aber ich habe den Thread
gestern Abend unter den "offenen Fragen" entdeckt, aus
welchem Grund auch immer.

und:  auch "alte Hüte" finden oft dankbare Abnehmer ... ;-)

Al


Bezug
                                        
Bezug
Kreisausschnitt Berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Do 11.06.2009
Autor: M.Rex


> > Hallo Al-Chwarizmi,
>  >  
> > deine Hilfe kommt leider etwas spät, der Thread ist bereits
> > > 1000 Tage alt. [kaffeetrinker]
>  >  
> > lg moody
>  
>
> ... hab' ich gar nicht beachtet, aber ich habe den Thread
>  gestern Abend unter den "offenen Fragen" entdeckt, aus
>  welchem Grund auch immer.
>
> und:  auch "alte Hüte" finden oft dankbare Abnehmer ... ;-)

Da war auch eine Rückfrage, die irgendein Mod als neue Frage in einem neuen Thread aufgemacht hat.

>
> Al
>  

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de