www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lösung von Gleichungssystemen mit dem Gauß-Algorithmus
Lösung von Gleichungssystemen mit dem Gauß-Algorithmus < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von Gleichungssystemen mit dem Gauß-Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Fr 12.03.2004
Autor: nadineklever

Hallo,

habe gerade eure Homepage gefunden. Tolle Seite, nur bis jetzt habe ich leider nicht das gefunden was ich gesucht habe. Könnt ihr mir bei einer Aufgabe helfen die zu dem Thema: Lösung von Gleichungssystemen mit dem Gauß-Algorithmus gehört!? Da ich an der Lösung verzweifele benötige ich wirklich Hilfe!

4x-4y+3z=22
2x-3y+4z=19
-6x-y+5z=7


Hoffe ihr könnt mir helfen :-)

Gruß Nadine Klever

        
Bezug
Lösung von Gleichungssystemen mit dem Gauß-Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Fr 12.03.2004
Autor: Marc

Hallo nadineklever,

willkommen im MatheRaum! :-)

> habe gerade eure Homepage gefunden. Tolle Seite, nur bis
> jetzt habe ich leider nicht das gefunden was ich gesucht
> habe. Könnt ihr mir bei einer Aufgabe helfen die zu dem
> Thema: Lösung von Gleichungssystemen mit dem
> Gauß-Algorithmus gehört!? Da ich an der Lösung verzweifele
> benötige ich wirklich Hilfe!

Kein Problem.

> 4x-4y+3z=22
>  2x-3y+4z=19
>  -6x-y+5z=7

Der Gauß-Algorithmus beruht auf dem Additionsverfahren für lineare Gleichungssysteme (LGS); er ist im Prinzip nur eine systematische Anwendung dieses Verfahrens.

Man versucht, durch "geschicktes" mehrmaliges Addieren einer Gleichung zu einer anderen in jedem Schritt eine Variable in einer Gleichung des LGS zu eliminieren.

Für ein LGS mit drei Variablen und drei Gleichungen sieht der "Fahrplan" so aus:

Start (die Fragezeichen (?) stehen für beliebe Zahlen):
|?x + ?y + ?z = ?
|?x + ?y + ?z = ?
|?x + ?y + ?z = ?

Durch Addition eines der ersten Gleichung zu Vielfachen der 2. und 3. Gleichung kann man folgende Nullen erzeugen:

|?x + ?y + ?z = ?
|0x + ?y + ?z = ?
|0x + ?y + ?z = ?

oder kompakter hingeschrieben:

|?x + ?y + ?z = ?
|     ?y + ?z = ?
|     ?y + ?z = ?

Nun addiert man die 2. Gleichung zu einem Vielfachen 3. Gleichung, und erreicht dort eine weitere Null:

|?x + ?y + ?z = ?
|     ?y + ?z = ?
|     0y + ?z = ?

wieder kompakter aufgeschrieben:

|?x + ?y + ?z = ?
|     ?y + ?z = ?
|          ?z = ?

Die letzte Gleichung enthält nun nur noch eine einzige Variable, ihr Wert kann deswegen einfach bestimmt werden (durch Division durch den Koeefizienten von z).

Dieser Wert für z kann nun in die zweite Gleichung eingesetzt werden, wodurch diese wieder nur noch eine Variable, nämlich y, enthält. y ist also bestimmt.

y und z werden in die erste Gleichung eingesetzt, um x zu bestimmen.

Dieses Verfahren läßt sich sehr einfach auf LGS mit mehreren Variablen und/oder mehreren Gleichungen verallgemeinern.

Ich mache dir mal den ersten Schritt konkret an deinem Beispiel vor.

Wir haben:
| 4x - 4y + 3z = 22
| 2x - 3y + 4z = 19
|-6x -  y + 5z = 7

Ich multiplizieren die zweite Gleichung mit -2 und erhalte:

| 4x - 4y + 3z = 22
|-4x + 6y - 8z = -38
|-6x -  y + 5z = 7

nun addiere ich die 1. Gleichung zur 2. Gleichung:

| 4x - 4y + 3z = 22
| 0x + 2y - 5z = -16
|-6x -  y + 5z = 7

Jetzt würde ich gerne die -6 der dritte Gleichung verschwinden lassen; ich könnte diese Gleichung einfach mit dem Bruch 2/3 multiplizieren und dann die erste Gleichung addieren. Da Brüche fehleranfällig sind und es hier noch einen bruchfreien Weg gibt, gehe ich lieber den:
Ich multipliziere die 3. Gleichung mit 2 und die erste Gleichung mit 3; dann haben beide als Koeffizient von x eine 12 bzw. -12:

| 12x - 12y +  9z = 66
|        2y -  5z = -16
|-12x -  2y + 10z = 14

Wenn ich nun die 1. Gleichung zur 3. addiere, verschwindet das x aus der 3. Gleichung:

| 12x - 12y +  9z = 66
|        2y -  5z = -16
|  0x - 14y + 19z = 80

kompakter:

| 12x - 12y +  9z = 66
|        2y -  5z = -16
|     - 14y + 19z = 80

So, die weiteren Schritte überlasse ich zur Übung dir. Als nächstes mußt du die -14 in der dritte Gleichung eliminieren.

Sobald du deine Lösung (-sversuche) gepostet hast, schreibe ich ich auch noch mal den gesamten Rechenweg ohne lästige Detailrechnung auf (so, dass mit Zwischenrechnungen, die man im Kopf erledigen kann, fehlen).

Bis gleich,
Marc


Bezug
                
Bezug
Lösung von Gleichungssystemen mit dem Gauß-Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Mo 26.12.2005
Autor: fanat26

Hallo,ich möchte mich mal einmischen.
Die zweite Zeile könnte man mit 7 multiplizieren,und das Ergebniß zur dritten
Zeile addieren.

12X-12Y+9Z=66
      14Y-35Z=-112
            -16Z=-32

Bezug
        
Bezug
Lösung von Gleichungssystemen mit dem Gauß-Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Fr 12.03.2004
Autor: Marc

Hallo Nadine,

ich möchte dich für deine zukünftigen Fragen hier im MatheRaum auf unseren Standpunkt zu Cross-Posts hinweisen.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de