www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Moduln von Z
Moduln von Z < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moduln von Z: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:08 Do 12.04.2012
Autor: ella87

Aufgabe
Zeigen Sie, dass (M,+) mit [mm]M=\{ax+by+cz|x,y,z \in \IZ \}[/mm] ein Modul von [mm]\IZ[/mm] ist.
Um welchen Modultyp (d.h. [mm]M=m \IZ[/mm] mit [mm]m \in \IN[/mm], m=?) handelt es sich?

ich grübel grade an der 2. Frage.
Ich weiß, dass jeder Modul aus den ganzzahligen Vielfachen seiner kleinsten positiven Zahl besteht. Ich frage mich also gerade was denn diese kleinste Zahl ist, die ich als Linearkombination von 3 Zahlen darstellen kann.

Erst dachte ich es sei das Minimum von a,b,c. Aber das kann man mit Zahlenbeispiele leicht widerlegen (2,3,7 dann ist 1=2*2-1*3+0*7).
Ich vermute, dass es der ggT(a,b,c) ist. Der lässt sich auf jedenfall als Linearkombination von a,b,c mit ganzzahligen Vorfaktoren darstellen, aber ist das auch die kleinste Zahl...?

oder kann man die 1 sogar immer darstellen? Nein, oder?

        
Bezug
Moduln von Z: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Fr 13.04.2012
Autor: felixf

Moin!

> Zeigen Sie, dass (M,+) mit [mm]M=\{ax+by+cz|x,y,z \in \IZ \}[/mm]
> ein Modul von [mm]\IZ[/mm] ist.
>  Um welchen Modultyp (d.h. [mm]M=m \IZ[/mm] mit [mm]m \in \IN[/mm], m=?)
> handelt es sich?
>
>  ich grübel grade an der 2. Frage.
>  Ich weiß, dass jeder Modul aus den ganzzahligen
> Vielfachen seiner kleinsten positiven Zahl besteht. Ich
> frage mich also gerade was denn diese kleinste Zahl ist,
> die ich als Linearkombination von 3 Zahlen darstellen
> kann.
>  
> Erst dachte ich es sei das Minimum von a,b,c. Aber das kann
> man mit Zahlenbeispiele leicht widerlegen (2,3,7 dann ist
> 1=2*2-1*3+0*7).
> Ich vermute, dass es der ggT(a,b,c) ist.

Das stimmt.

> Der lässt sich auf jedenfall als Linearkombination von a,b,c mit
> ganzzahligen Vorfaktoren darstellen, aber ist das auch die
> kleinste Zahl...?

Das musst du zeigen. Sei $M = m [mm] \IZ$ [/mm] und sei $ggT(a, b, c) = d$, und $d = [mm] \lambda_1 [/mm] a + [mm] \lambda_2 [/mm] b + [mm] \lambda_3 [/mm] c$ mit [mm] $\lambda_1, \lambda_2, \lambda_3 \in \IZ$. [/mm]

Wegen $d = [mm] \lambda_1 [/mm] a + [mm] \lambda_2 [/mm] b + [mm] \lambda_3 [/mm] c$ gilt $d [mm] \in [/mm] M$, also $m [mm] \mid [/mm] d$.

Weiterhin gibt es [mm] $\mu_1, \mu_2, \mu_3 \in \IZ$ [/mm] mit $m = [mm] \mu_1 [/mm] a + [mm] \mu_2 [/mm] b + [mm] \mu_3 [/mm] c$. Wegen $d [mm] \mid [/mm] a$, $d [mm] \mid [/mm] b$, $d [mm] \mid [/mm] c$ kannst du $d [mm] \mid [/mm] m$ folgern.

Also gilt $m [mm] \mid [/mm] d$ und $d [mm] \mid [/mm] m$. Was folgt daraus?

> oder kann man die 1 sogar immer darstellen? Nein, oder?

Nein. Gegenbeispiel: $a = b = c = 2$. Dann ist $M = 2 [mm] \IZ$ [/mm] und 1 kann nicht so dargestellt werden.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de