www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Potenzen von Matrizen
Potenzen von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 18.05.2009
Autor: TommyAngelo

Hallo Leute,

folgende Aufgabe:

[Dateianhang nicht öffentlich]

Also muss ich zeigen, dass all diese Potenzen sich durch Linearkombination von 2 lin. unabhängigen Matrizen darstellen lassen?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Potenzen von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mo 18.05.2009
Autor: reverend

Hallo TommyAngelo,

> Also muss ich zeigen, dass all diese Potenzen sich durch
> Linearkombination von 2 lin. unabhängigen Matrizen
> darstellen lassen?

Fast. Vergiss nicht, dass nur Ursprungsebenen sich so darstellen lassen. Womöglich brauchst Du noch einen Aufpunkt, also eine additive konstante dritte Matrix, so dass [mm] C^i=A+\lambda B+\mu{D} [/mm] ist und damit eine Ebene.

Grüße
reverend

Bezug
                
Bezug
Potenzen von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Mo 18.05.2009
Autor: TommyAngelo

Wie stell ich das am besten an?

Bezug
                        
Bezug
Potenzen von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Mo 18.05.2009
Autor: reverend

Nimm eine beliebige Matrix [mm] C=\pmat{ a & b \\ c & d }. [/mm] Wie sieht [mm] C^2 [/mm] aus, wie [mm] C^3? [/mm] Erkennst Du eine Regel?

Deine Aufgabe setzt voraus, dass jede Matrix auf einen Vektor abgebildet wird:
[mm] C=\pmat{ a & b \\ c & d } \mapsto \vec{v}(C)=\vektor{a \\ b\\ c\\d}. [/mm]

Allerdings gelten nicht die "normalen" Regeln der Vektormultiplikation, sondern nach wie vor die der Matrizenmultiplikation.

Betrachte die Vektoren, auf die [mm] C^2, C^3 [/mm] etc. abgebildet werden. Kannst Du eine Ebene aus [mm] \vec{v}(C), \vec{v}(C^2), \vec{v}(C^3) [/mm] konstruieren? Wenn ja, liegt [mm] \vec{v}(C^4) [/mm] auch in dieser Ebene?

Bezug
        
Bezug
Potenzen von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 Di 19.05.2009
Autor: fred97

Ist C eine  2 [mm] \times [/mm] 2- Matrix, so ist ihr char. Polynom p ein Polynom vom Grade 2, also

             $p(x) = [mm] x^2-ax-b$ [/mm]

Nach dem Satz von Cayley_Hamilton ist $p(C)= 0$, also

              [mm] $C^2= [/mm] aC+bI$,      (wobei I = 2 [mm] \times [/mm] 2 - Einheitsmatrix)

Dann ist z.B.

               [mm] $C^3 [/mm] = C(aC+bI) = [mm] aC^2+bC= (a^2+b)C+abI$ [/mm]

Induktiv sieht man:

Zu jedem $n [mm] \in \IN_0$ [/mm] gibt es Skalare [mm] a_n [/mm] und [mm] b_n [/mm] mit

                 [mm] $C^n [/mm] = a_nC+b_nI$

Also liegen alle Potenzen von C in der von C und I aufgespannten Ebene.

FRED



Bezug
                
Bezug
Potenzen von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Di 19.05.2009
Autor: TommyAngelo

Dankeschön, jetzt hab ich es verstanden. Der Satz von Cayley-Hamilton ist ja der Hammer.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de