www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenbarwertformel
Rentenbarwertformel < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenbarwertformel: Formelumstellung
Status: (Frage) beantwortet Status 
Datum: 13:56 So 16.11.2008
Autor: vanbommel1984

Aufgabe 1
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Herr B möchte ein Auto kaufen, ihm werden folgende Angebote unterbreitet:

Variante 1: Sofortzahlung 24.999 €
Variante 2: Anzahlung 4.999 und 36 nachschüssige Monatsraten in Höhe r

Wie hoch ist die monatliche Rate bei einer Effektivverzinsung von 3 %?


Aufgabe 2
die Formel zur Berechnung dieser Aufgabe ist mir bereits bekannt, jedoch kann ich sie nicht umstellen. wer kann mir diese Formel nach r umstellen? hierbei handelt es sich um die nachschüssige Barwertformel mit einer nachschüssigen Jahresersatzrate.

[mm] B{n}=r*(12+5,5*p)*\bruch{q^n-1}{q^n(q-1)} [/mm]



        
Bezug
Rentenbarwertformel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 16.11.2008
Autor: MathePower

Hallo vanbommel1984,


[willkommenmr]


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Herr B möchte ein Auto kaufen, ihm werden folgende Angebote
> unterbreitet:
>  
> Variante 1: Sofortzahlung 24.999 €
>  Variante 2: Anzahlung 4.999 und 36 nachschüssige
> Monatsraten in Höhe r
>  
> Wie hoch ist die monatliche Rate bei einer
> Effektivverzinsung von 3 %?
>  
>
> die Formel zur Berechnung dieser Aufgabe ist mir bereits
> bekannt, jedoch kann ich sie nicht umstellen. wer kann mir
> diese Formel nach r umstellen? hierbei handelt es sich um
> die nachschüssige Barwertformel mit einer nachschüssigen
> Jahresersatzrate.
>  
> [mm]B{n}=r*(12+5,5*p)*\bruch{q^n-1}{q^n(q-1)}[/mm]
>  


Bringe alles, was nicht mit r zu tun hat, auf die andere Seite,


Gruß
MathePower

Bezug
                
Bezug
Rentenbarwertformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 16.11.2008
Autor: vanbommel1984

Aufgabe
habe alles was nicht mit r zu tun hat auf die andere seite gestellt und komme jetzt auf die formel [mm] r=Bx^{n}*(12+5,5*0,03)*\bruch{q^{n}-1}{q^{n}(q-1)} [/mm]

beim ausrechnen meiner aufgabe komme ich jedoch auf eine zahl die mir nicht logisch erscheint. wer kann mir weiterhelfen?

Bezug
                        
Bezug
Rentenbarwertformel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 So 16.11.2008
Autor: MathePower

Hallo vanbommel1964,

> habe alles was nicht mit r zu tun hat auf die andere seite
> gestellt und komme jetzt auf die formel
> [mm]r=Bx^{n}*(12+5,5*0,03)*\bruch{q^{n}-1}{q^{n}(q-1)}[/mm]
>  
> beim ausrechnen meiner aufgabe komme ich jedoch auf eine
> zahl die mir nicht logisch erscheint. wer kann mir
> weiterhelfen?

Ausgangsgleichung ist:

[mm]Bn=r*\left(12+5,5*p\right)*\bruch{q^{n}-1}{q^{n}(q-1)}[/mm]

Was mußt Du tun, damit das r alleine steht?

Nun, das ist die Umkehroperation des Multiplizierens: Dividieren

Dann steht da:

[mm]r=\bruch{Bn}{\left(12+5,5*p\right)}*\bruch{q^{n}\left(q-1\right)}{\left(q^{n}-1\right)}[/mm]

Somit solltest Du jetzt auf das richtige Ergebnis kommen.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de