www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Skalarptodukt 3er Vektoren
Skalarptodukt 3er Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarptodukt 3er Vektoren: Frage
Status: (Frage) beantwortet Status 
Datum: 16:06 Mi 20.10.2004
Autor: snow1283

Hey Leutz!
Ich habe mal ne Frage! ich habe da so'ne Aufgabe gestellt bekommen und zwar folgendes:

x + a = ( x * c ) *   b

wobei a,b,c und x wie man sieht alles vektoren sein sollen. Jetzt soll ich nach x auflösen, kann dies aber nicht, weil ich das x nicht aus der Klammer bekomme. mir fehlt da wohl ne wichtige formel, die ich anwenden müsste.
wer kann mir helfen?


danke schon mal
snow




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarptodukt 3er Vektoren: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Mi 20.10.2004
Autor: Julius

Hallo snow!

> Hey Leutz!
>  Ich habe mal ne Frage! ich habe da so'ne Aufgabe gestellt
> bekommen und zwar folgendes:
>  
> x + a = ( x * c ) *  b
>  
> wobei a,b,c und x wie man sieht alles vektoren sein sollen.

Das kann nicht richtig sein, da ( x * c ein Skalar ist und daher das Skalarprodukt von
x * c (einem Skalar) mit  b (einem Vektor) nicht definiert ist.

Schau bitte noch einmal nach.

Oder handelt es sich um das Vektorprodukt (Kreuzprodukt)?

Liebe Grüße
Julius


Bezug
        
Bezug
Skalarptodukt 3er Vektoren: annahme
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 20.10.2004
Autor: andreas

hi Nika

ich nehme jetzt einfach mal an, dass die vektoren aus dem [m] \mathbb{R}^n [/m] stammen sollen (du hast ja nichts anderes vorausgesetzt).

dann ist das produkt auf der rechten seite in der klammer ein skalarprodukt und - wie von julius schon angemerkt - kann dann das andere kein skalraprodukt sein. hierbei muss es sich also um die multiplikation eines vektors mit einem skalar (reellen zahl) handeln.

du erhälst also - in koordinaten schriebweise:

[m] \left( \begin{array}{c} x_1 + a_1 \\ \vdots \\ x_n + a_n \end{array} \right) = (x_1c_1 + \hdots + x_nc_n) \left( \begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right) [/m]
[m] \left( \begin{array}{c} x_1 + a_1 \\ \vdots \\ x_n + a_n \end{array} \right) = \left( \begin{array}{c}(x_1c_1 + \hdots + x_nc_n) b_1 \\ \vdots \\ (x_1c_1 + \hdots + x_nc_n) b_n \end{array} \right) [/m]  


jetzt kannst du ja mal die $i$-te zeile betrachten (da vektoren genau dann gleich sind, wenn alle koordinaten übereinstimmen):
[m] x_i + a_i = (x_1c_1 + \hdots + x_i c_i + \hdots + x_nc_n) b_i [/m]

und diese gleichung nach [mm] $x_i$ [/mm] auflösen. das sollte  jetzt dann machbar sein. wenn nicht frage einfach nochmal nach.

grüße
andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de