gedämpfter oszillator m. Kraft < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Lösen sie die inhomogene DGL
[mm] d^2x/dt^2 +\gamma*dx/dt +\omega_{0}^2x [/mm] = [mm] Acos(w_{1}t)
[/mm]
durch Fouriertransformation.
Terme die durch die Auswertung der Fourierintegrale entstehen müssen nicht vereinfacht werden.
Hinweis: komplexe Darstellung des Kosinus |
Hallo,
ich habe die Lösung der homogenen DGL x(t)= [mm] x_{0}*e^{-\gamma/2t} [/mm] [ [mm] e^{i\omega t} [/mm] + [mm] e^{-i\omega t} [/mm] ] mit [mm] \omega [/mm] = [mm] \wurzel{-\gamma^2 /2 +\omega_{0}^2}
[/mm]
Jetzt brauch ich noch ne inhomogene Lösung, wenn ich einfach die ganze Gleichung einzeln Fouriertransformiere (geht das?) bekomme ich auf der linken Seite drei Fourierintegrale (was passiert mit den Ableitungen? Muss ich jetzt nach omega ableiten?) und für den Cosinus [mm] 1/2[\delta(\omega_{1} -\omega) [/mm] + [mm] \delta(-\omega_{1} -\omega) [/mm] ]
Jetzt weiß ich nicht wie ich das nach x(w) auflösen kann und ich hab auch keine Ahnung wie ich die komplexe Darstellung des Kosinus da reinfriemeln soll.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:21 Mi 22.08.2007 | Autor: | rainerS |
Hallo!
> Lösen sie die inhomogene DGL
> [mm]d^2x/dt^2 +\gamma*dx/dt +\omega_{0}^2x=A\cos(w_{1}t)[/mm]
> durch Fouriertransformation.
> Terme die durch die Auswertung der Fourierintegrale entstehen müssen nicht vereinfacht werden.
> Hinweis: komplexe Darstellung des Kosinus
> ich habe die Lösung der homogenen DGL
> [mm]x(t)= x_{0}*e^{-\gamma/2t} [ e^{i\omega t} + e^{-i\omega t}][/mm] mit [mm]\omega=\wurzel{-\gamma^2 /2 +\omega_{0}^2}[/mm]
>
> Jetzt brauch ich noch ne inhomogene Lösung, wenn ich
> einfach die ganze Gleichung einzeln Fouriertransformiere
> (geht das?)
Ja, denn die Fouriertransformation ist linear.
> bekomme ich auf der linken Seite drei
> Fourierintegrale (was passiert mit den Ableitungen? Muss = [mm] \bruch{A}{2}
[/mm]
> ich jetzt nach omega ableiten?)
Nein, nach t: wenn [mm]X(\omega)[/mm] die Fouriertransformierte von x(t) ist,
[mm]x(t) = \integral_{-\infty}^{+\infty} X(\omega) \mathrm{e}^{i\omega t} d\omega[/mm],
dann bekommst du durch Ableiten beider Seiten nach t:
[mm]\bruch{dx(t)}{dt} = i\omega \integral_{-\infty}^{+\infty} X(\omega) \mathrm{e}^{i\omega t} d\omega[/mm].
> und für den Cosinus [mm]1/2[\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)][/mm]
Da hast du ja schon die komplexe Darstellung des Kosinus benutzt.
> Jetzt weiß ich nicht wie ich das nach x(w) auflösen kann
> und ich hab auch keine Ahnung wie ich die komplexe
> Darstellung des Kosinus da reinfriemeln soll.
Mit der Ableitungsregel bekommst du:
[mm](-\omega^2 +i\gamma\omega+\omega_0^2) X(\omega) = \bruch{A}{2}\left(\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)\right)[/mm]
oder
[mm]X(\omega) = \bruch{A}{2}\bruch{1}{-\omega^2 +i\gamma\omega+\omega_0^2} \left(\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)\right)[/mm]
Und jetzt einsetzen:
[mm]x(t) = \integral_{-\infty}^{+\infty} X(\omega) \mathrm{e}^{i\omega t} d\omega = \bruch{A}{2}\integral_{-\infty}^{+\infty} \bruch{1}{-\omega^2 +i\gamma\omega+\omega_0^2}\left(\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)\right)\mathrm{e}^{i\omega t} d\omega = \bruch{A}{2} \left(\bruch{\mathrm{e}^{i\omega_1 t}}{-\omega_1^2 +i\gamma\omega_1+\omega_0^2} + \bruch{\mathrm{e}^{-i\omega_1 t}}{-\omega_1^2 -i\gamma\omega_1+\omega_0^2}\right)[/mm]
[mm]= \bruch{A}{2} \bruch{1}{(\omega_0^2-\omega_1^2)^2 + \gamma^2\omega_1^2}\left((\omega_0^2-\omega_1^2) (\mathrm{e}^{i\omega_1 t} + \mathrm{e}^{-i\omega_1 t}) -i\gamma\omega_1 (\mathrm{e}^{i\omega_1 t} -\mathrm{e}^{-i\omega_1 t})\right)[/mm]
[mm]=\bruch{A}{(\omega_0^2-\omega_1^2)^2 + \gamma^2\omega_1^2} \left((\omega_0^2-\omega_1^2) \cos(\omega_{1}t) +\gamma\omega_1 \sin(\omega_{1}t) \right) [/mm]
Viele Grüße
Rainer
|
|
|
|
|
Hallo,
> Mit der Ableitungsregel bekommst du:
> [mm](-\omega^2 +i\gamma\omega+\omega_0^2) X(\omega) = \bruch{A}{2}\left(\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)\right)[/mm]
Wie hast du das Integral mit e-Funktion links wegbekommen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:52 Do 23.08.2007 | Autor: | rainerS |
Hallo!
> > Mit der Ableitungsregel bekommst du:
> > [mm](-\omega^2 +i\gamma\omega+\omega_0^2) X(\omega) = \bruch{A}{2}\left(\delta(\omega_{1} -\omega)+\delta(-\omega_{1} -\omega)\right)[/mm]
>
> Wie hast du das Integral mit e-Funktion links wegbekommen?
Mit der Fouriertransformation. Vorher steht da:
[mm]d^2x/dt^2 +\gamma*dx/dt +\omega_{0}^2x=A\cos(w_{1}t)[/mm]
dann wende ich die Fouriertransformation auf beiden Seiten an. Aus den Ableitungen wird die Multiplikation mit [mm]-\omega^2[/mm] bzw. [mm]i\omega[/mm], aus dem [mm]x(t)[/mm] wird [mm]X(\omega)[/mm] und aus dem Cosinus wird die Summe der beiden [mm]\delta[/mm]-Distributionen.
Grüße
Rainer
|
|
|
|