www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Existenz eines Isomorphismuses
Existenz eines Isomorphismuses < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz eines Isomorphismuses: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 So 04.07.2004
Autor: Jessica

Hallo zusammen

ich komme bei der einen Aufgabe nicht weiter. Sie lautet:

Es sei K ein kommutativer Ring und V sei K-Modul. Man zeige:


Es gibt einen Isomorphismus [mm] \varphi: K\otimes_K V \to V[/mm] mit [mm]\varphi(s\otimes v)=s*v[/mm] für alle [mm]s\inK ,v\in V[/mm]

Die Existenz von [mm]\varphi[/mm] habe ich wie folgt bewiesen.

Definiere [mm]\Phi_2:K\times V\rightarrow V[/mm] mit [mm]\Phi_2(s,v)=s*v[/mm]
Zu zeigen: [mm]\Phi_2[/mm] bilinear.
Es gilt:
1) [mm]\Phi_2(ts+s',v)=(ts+s')v=tsv+s'v=t(sv)+s'v=t\Phi_2(s,v)+\Phi_2(s',v)[/mm]
2) [mm]\Phi_2(s,tv+v')=s(tv+v')=stv+sv'=t(sv)sv'=t\Phi_2(s,v)+\Phi_2(s,v')[/mm]
[mm]\Rightarrow \Phi_2[/mm] bilinear.
[mm]\Rightarrow[/mm] Es existiert genau eine K-lineare Abbildung: [mm]\varphi:K\otimes V \rightarrowV[/mm] mit [mm]\varphi(s\otimes v)=s*v[/mm]

Es bleibt noch zu zeigen, dass [mm]\varphi [/mm] Isomorphismus ist.
Hierbei hänge ich. Könntet ihr mir hierfür einen Tipp geben.

Vielen dank im Vorraus
bis denne
Jessica.



        
Bezug
Existenz eines Isomorphismuses: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 04.07.2004
Autor: Stefan

Dies ist nur ein gültiger Beweis für Vektorräume, nicht für Moduln (jedenfalls nicht für nicht freie Moduln). Der richtige Beweis findet sich hier

Liebe Jessica!

[mm] $\varphi$ [/mm] ist doch dann ein Isomorphismus, wenn das Bild einer Basis von $K [mm] \otimes_K [/mm] V$ unter [mm] $\varphi$ [/mm] wieder eine Basis von $V$ ist, oder?

Aber nun ist:

$(1 [mm] \otimes_K v_i)_{i \in I}$ [/mm]

eine Basis von $K [mm] \otimes_K [/mm] V$, wenn

[mm] $(v_i)_{i \in I}$ [/mm]

eine Basis von $V$ ist, und es gilt:

[mm] $\varphi(1 \otimes_K v_i) [/mm] = [mm] v_i$ [/mm]

für alle $i [mm] \in [/mm] I$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Existenz eines Isomorphismuses: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 So 04.07.2004
Autor: Jessica

Danke für die schnell Antwort, die war echt goldwert!

Liebe Grüße
Jessica

Bezug
                
Bezug
Existenz eines Isomorphismuses: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 So 04.07.2004
Autor: Feanor

Hallo zusammen,

> [mm]\varphi[/mm] ist doch dann ein Isomorphismus, wenn das Bild
> einer Basis von [mm]K \otimes_K V[/mm] unter [mm]\varphi[/mm] wieder eine
> Basis von [mm]V[/mm] ist, oder?
>  
> Aber nun ist:
>  
> [mm](1 \otimes_K v_i)_{i \in I}[/mm]
>  
> eine Basis von [mm]K \otimes_K V[/mm], wenn
>  
> [mm](v_i)_{i \in I}[/mm]
>  
> eine Basis von [mm]V[/mm] ist, und es gilt:

das war auch mein erster Ansatz,  hier muß man allerdings aufpassen, es kann ja auch sein, daß der Modul keine Basis besitzt (z.B. [mm] $\IZ_n$ [/mm] als [mm] $\IZ$ [/mm] Modul).
Daher habe ich das so gemacht:
[mm] ($\varphi$ [/mm] injektiv) Gilt [mm] $\varphi(s\otimes v)=\varphi(s'\otimes [/mm] v')$, so gilt weiter $sv=s'v'$, also [mm] $s\otimes v=1\otimes (sv)=1\otimes (s'v')=s'\otimes [/mm] v'$. Also ist [mm] $\varphi$ [/mm] injektiv.
[mm] ($\varphi$ [/mm] surjektiv) Für beliebiges [mm] $v\in [/mm] V$ gilt [mm] $v=\varphi(1\otimes [/mm] v)$, mit [mm] $1\otimes v\in K\otimes [/mm] V$, damit ist [mm] $\varphi [/mm] $ surjektiv.

Viele Grüße
Sebastian

Bezug
                        
Bezug
Existenz eines Isomorphismuses: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 So 04.07.2004
Autor: Stefan

Lieber Sebastian!

Du hast vollkommen Recht. Ich hatte überlesen, dass es sich um Moduln handelt und nur an Vektorräume gedacht. [sorry], liebe Jessica!

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de