Prof. Dr. G. Böckle Institut für Experimentelle Mathematik Ellernstr. 29 la@iem.uni-due.de http://www.iem.uni-due.de/ \sim la

ÜBUNGSBLATT NR. 11 LINEARE ALGEBRA I

Aufgaben für die Übungsgruppen

Aufgabe Ü28 Sei K ein Körper, $n \in \mathbb{N}$ und $A \in \mathcal{M}_{n,n}(K)$ beliebig. Sei $f : V_n(K) \longrightarrow V_n(K)$, $x \mapsto Ax$. Man zeige:

- a) f ist genau dann diagonalisierbar, wenn ein $C \in GL_n(K)$ existiert so dass $C^{-1}AC$ eine Diagonalmatrix ist.
- b) f ist genau dann triangonalisierbar, wenn ein $C \in GL_n(K)$ existiert so dass $C^{-1}AC$ eine obere Dreiecksmatrix ist.

$$\textbf{Aufgabe ""U29} \quad \text{Sei K ein K\"{o}rper und sei $f:V_3(K)\longrightarrow V_3(K)$, $x\mapsto \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)\cdot x.$$

Man zeige:

- a) $P_f(T) = (T-1)^3$
- b) $\dim(V_1(f)) = 1$
- c) f ist nicht diagonalisierbar.

Aufgabe Ü30 Man zeige, dass $\overline{}: \mathbb{C} \longrightarrow \mathbb{C}: a+b\mathbf{i} \mapsto \overline{a+b\mathbf{i}}:=a-b\mathbf{i}$ ein Körperautomorphismus von \mathbb{C} ist und dass $\{z \in \mathbb{C} | z=\overline{z}\}=\mathbb{R}$ gilt.

Schriftliche Hausaufgaben

Abgabe. Bis Donnerstag, 20.1., 13 Uhr, gegenüber dem Dekanat Mathematik.

Besprechung. H41 und H42 werden in den Globalübungen am 24.1. besprochen.

Aufgabe H39 Für $n \in \mathbb{N}$ sei $\mathcal{M}_{n,n}(\mathbb{Z}) := \{(a_{ij})_{i,j} \in \mathcal{M}_{n,n}(\mathbb{Q}) | \forall i,j \in \{1,\ldots,n\} : a_{i,j} \in \mathbb{Z}\}.$

Sei $A \in \mathcal{M}_{n,n}(\mathbb{Z})$. Man zeige:

- a) $det(A) \in \mathbb{Z}$.
- b) $\operatorname{Adj}(A) \in \mathcal{M}_{n,n}(\mathbb{Z}).$
- c) Gibt es eine Matrix $B \in \mathcal{M}_{n,n}(\mathbb{Z})$ mit $A \cdot B = 1_n$, so gilt $\det(A) = \pm 1$.
- d) Gilt $\det(A) = \pm 1$, so liegt A^{-1} in $\mathcal{M}_{n,n}(\mathbb{Z})$.

Aufgabe H40 Sei K ein Körper und seien $m, l \in \mathbb{N}$ mit $m, l \geq 1$. Sei n := m + l. Seien $A \in \mathcal{M}_{m,m}(K), B \in \mathcal{M}_{m,l}(K), D \in \mathcal{M}_{l,l}(K)$ und $\mathcal{A} := \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in \mathcal{M}_{n,n}(K)$.

Man zeige:

a) $Rang(D) < l \Longrightarrow Rang(A) < n$.

b) Gilt Rang(D) = l, so gelten:

i) $D \in GL_l(K)$.

$$\begin{aligned} &\text{ii)} \ \mathcal{A} \cdot \begin{pmatrix} 1_m & 0 \\ 0 & D^{-1} \end{pmatrix} = \begin{pmatrix} A & BD^{-1} \\ 0 & 1_l \end{pmatrix}. \\ &\text{iii)} \ \det(\begin{pmatrix} A & BD^{-1} \\ 0 & 1_l \end{pmatrix}) = \det(\begin{pmatrix} A & 0 \\ 0 & 1_l \end{pmatrix}). \\ &\text{iv)} \ \det(\begin{pmatrix} A & 0 \\ 0 & 1_l \end{pmatrix}) = \det(A), \ \det(\begin{pmatrix} 1_m & 0 \\ 0 & D^{-1} \end{pmatrix}) = \det(D^{-1}) \\ &\text{c)} \ \det(\mathcal{A}) = \det(A) \cdot \det(D). \end{aligned}$$

Hinweis zu b) iii). Man verwende elementare Zeilenumformungen.

Hinweis zu b) iv). Man verwende den Entwicklungssatz von Laplace.

Hinweis zu c). Man verwende a) und b).

Aufgabe H41

Sei $P(T) \in \mathbb{R}[T]$. Man zeige (unter Verwendung von **Ü30**):

- a) Für $\lambda \in \mathbb{C}$ gilt: $\overline{P(\lambda)} = P(\overline{\lambda})$.
- b) Ist $\lambda \in \mathbb{C}$ eine Nullstelle von P, so auch $\overline{\lambda}$.
- c) Für $\lambda \in \mathbb{C} \setminus \mathbb{R}$ ist $(T \lambda)(T \overline{\lambda})$ ein Polynom in $\mathbb{R}[T]$ ohne Nullstellen in \mathbb{C} .
- d) $P(T) \in \mathbb{R}[T] \setminus \{0\}$ läßt sich (bis auf Vertauschung der Nullstellen) eindeutig schreiben als

$$P(T) = c \cdot \prod_{i=1}^{k} (T - \lambda_i)^{n_i} \cdot \prod_{j=1}^{l} Q_j(T)^{m_j}$$

für $c \in \mathbb{R}^*, k, l \in \mathbb{N}, n_i, m_j \in \mathbb{N} \setminus \{0\}$, paarweise verschiede $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$, sowie paarweise verschiede quadratische normierte Polynome $Q_1, \ldots, Q_l \in \mathbb{R}[T]$ ohne Nullstellen in \mathbb{R} .

Aufgabe H42 Für die folgenden Matrizen $A \in \mathcal{M}_{n,n}(K)$ führe man folgende Schritte aus:

- a) Man berechne das charakteristische Polynom, bestimme dessen Nullstellen in K und deren Vielfachheiten.
- b) Man berechne die Eigenräume zu den Eigenwerten in K.
- c) Sofern dies möglich ist, finde man eine Matrix $C \in GL_n(K)$ und eine Diagonalmatrix $D \in GL_n(K)$ mit $C^{-1}AC = D$.

i)
$$K = \mathbb{Q}$$
, $A = \begin{pmatrix} 0 & -6 & 2 \\ 1 & 7 & -2 \\ 2 & 6 & 0 \end{pmatrix}$

ii)
$$K = \mathbb{R}$$
, $A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 1 & -2 \\ 2 & -1 & 1 \end{pmatrix}$

iii)
$$K = \mathbb{F}_5$$
, $A = \begin{pmatrix} 3 & 0 & 1 & 2 \\ 0 & 2 & 2 & 2 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 3 & 1 \end{pmatrix}$