www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" -
< Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

danke und frage
Status: (Frage) beantwortet Status 
Datum: 14:00 Do 19.05.2005
Autor: astro_son

an Banachella: danke dir fuer die Antwort und den Hinweis auf den Fehler des Parameters P. ich habe noch eine andere Frage und  bitte um eure Hilfe.
sei [mm] (U_{\alpha}) (\alpha\in [/mm] A) irgendeine offene Ueberdeckung eines kompakten metrischen Banachraums X. Zeige, zum Beispiel durch widerspruch, dass es ein [mm] \varepsilon>0 [/mm] gibt, sodass die [mm] \varepsilon-Umgebung U_{\varepsilon}(x) [/mm] jedes Punktes [mm] x\in [/mm] X in mindestens einer Menge [mm] U_{\alpha(x)} [/mm] der Ueberdeckung [mm] U_{\alpha} (\alpha\in [/mm] A)vollstaendig enthalten ist.

mir ist es ziemlich klar, aber ich weiss nicht wie ich das aufschreiben kann! :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Do 19.05.2005
Autor: Julius

Hallo!

Bitte Fragen zu völlig neuen Themenkomplexen in einen Extra-Thread stellen!

Ich verschiebe die Frage jetzt einmal...

Viele Grüße
Julius

Bezug
                
Bezug
Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:29 Do 19.05.2005
Autor: Micha

Hallo Julius!

Ich habs dann mal verschoben 6 Stunden nach deiner Ankündigung das zu tun. *g

Gruß Micha

Bezug
        
Bezug
Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 20.05.2005
Autor: banachella

Hallo!

Nimm mal an, es gebe kein solches [mm] $\varepsilon>0$. [/mm]
Setze zu [mm] $n\in\IN,\ \alpha\in [/mm] A$ [mm] $U_{n,\alpha}:=\bigcup\limits_{x\in X,\ U_{\bruch{1}{n}}(x)\subset U_\alpha} U_{\bruch{1}{n}}(x)$. [/mm]
[mm] $U_{n,\alpha}$ [/mm] ist also gerade die Vereinigung all jener offenen Kugeln mit dem Radius [mm] $\bruch{1}{n}$, [/mm] die in [mm] $U_\alpha$ [/mm] liegen.
Die [mm] $U_{n,\alpha}$ [/mm] sind offen und sie überdecken $X$. Aber es gibt nach Voraussetzung keine endiche Teilüberdeckung! Denn dann gäbe es ja ein größtes $n$ für das ein [mm] $U_{n,\alpha}$ [/mm] zu dieser Überdeckung gehört.
Das ist ein Widerspruch.

Kommst du mit dem Beweis zurecht?

Gruß, banachella

Bezug
                
Bezug
Frage
Status: (Frage) beantwortet Status 
Datum: 21:39 Fr 20.05.2005
Autor: astro_son

Aber es
> gibt nach Voraussetzung keine endiche Teilüberdeckung! Denn
> dann gäbe es ja ein größtes [mm]n[/mm] für das ein [mm]U_{n,\alpha}[/mm] zu
> dieser Überdeckung gehört.
>  Das ist ein Widerspruch.


ich hab die antwort sehr viele male gelesen, aber hab leider nicht verstanden und keinen widerspruch gefunden. kannst du vielleicht ein bischen klarer erlaeutern!!


Bezug
                        
Bezug
Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mo 23.05.2005
Autor: banachella

Hallo!

Die Idee ist folgende: Ich konstuiere mir eine Familie von offenen Mengen. Diese überdecken $X$. Das liegt daran, weil ja jedes [mm] $x\in [/mm] X$ in einem [mm] $U_\alpha$ [/mm] liegt. Weil [mm] $U_\alpha$ [/mm] offen ist, gibt es ein [mm] $n\in\IN$, [/mm] so dass [mm] $U_{\bruch{1}{n}}(x)\subset U_\alpha$. [/mm] Also liegt $x$ (und auch [mm] $U_{\bruch{1}{n}}(x)$) [/mm] in [mm] $U_{n,\alpha}$. [/mm]
Weil $X$ kompakt ist, muss es eine endliche Teilüberdeckung geben. Aber:
Wenn es eine endliche Teilüberdeckung [mm] $\cal{U}$ [/mm] gibt, dann gibt es ja ein größtes [mm] $N\in\IN$ [/mm] mit [mm] $U_{N,\alpha}\subset U_\alpha$ [/mm] für alle [mm] $\alpha$. [/mm] Aber da das eine Überdeckung ist, liegt ja jetzt jedes [mm] $x\in\X$ [/mm] in irgendeinem [mm] $U_{N,\alpha_0}$! [/mm] Also gibt es zu jedem $x$ ein [mm] $\alpha_0$, [/mm] so dass [mm] $U_{\bruch{1}{N}}(x)\subset U_{\alpha_0}$. [/mm] Dann ist ja [mm] $\varepsilon:=\bruch{1}{N}$ [/mm] gerade das [mm] $\varepsilon$, [/mm] das es nach Voraussetzung gar nicht gibt. Also haben wir hier einen Widerspruch.

Ist es dir jetzt etwas klarer geworden?

Gruß, banachella


Bezug
                                
Bezug
Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Mo 23.05.2005
Autor: astro_son

schoene dank  banachella
das problem ist dass ich Ueberdeckung und teilueberdeckung nicht richtig gemacht habe.
jetzt hab ich verstanden.
danke dir nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de