www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - 0/0
0/0 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

0/0 : 0/0 frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:05 So 24.10.2004
Autor: FLy

HI

Wäre könnte mir hier bei helfen

bruch{0}{0}:    [mm] ((x^2+x)(Exp x-1))^3/2 [/mm]     für x--->0

Was muss ich hier überhaupt tun?

Noch schwer ist :
0*unendlich
x ln(1+1/X) für x --> unendlich

kann mir jemand nen ansatz geben

        
Bezug
0/0 : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 So 24.10.2004
Autor: Marc

Hallo FLy,

> Wäre könnte mir hier bei helfen
>  
> bruch{0}{0}:    [mm]((x^2+x)(Exp x-1))^3/2[/mm]     für x--->0
>  
> Was muss ich hier überhaupt tun?

Gar nichts, denn es wird ja nichts gefragt.
  

> Noch schwer ist :
>  0*unendlich
>  x ln(1+1/X) für x --> unendlich

>  
> kann mir jemand nen ansatz geben

Bitte schreibe uns die komplette Aufgabenstellung, ich schätze, es hat was mit Grenzwerten von Funktionen und dem Satz von l'Hospital zu tun, aber das ist nur geraten.

Viele Grüße,
Marc



Bezug
                
Bezug
0/0 : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 25.10.2004
Autor: FLy

Die komplete Frage war:

berechnen Sie -sofern möglich- die folgenden unbestimmten Ausdrücke

a)0/0:   [mm] ((x^2+x)/(expx-1))^{3/2} [/mm]
....


d) 0*unendlich :    x*ln (1+1/X)


"Es müste sich schon um die regeln von l´hospital oder so ähnlich handeln habe aber nicht so viel ahnung"



Bezug
                        
Bezug
0/0 : Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 25.10.2004
Autor: Julius

Hallo FLy!

Es ist richtig, dass du die Regel von de l'Hospital anwenden musst.

Einen sehr guten Link dazu findest du []hier (Satz 13.22, Seite 126 der skriptinternen Zählung (oben)).

> a)0/0:   [mm]((x^2+x)/(expx-1))^{3/2} [/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Hier rechnest du:

$\lim\limits_{x \to 0} \left( \frac{x^2+x}{\exp(x)-1} \right)^{\frac{3}{2}}$

$= \left( \lim\limits_{x \to 0} \left( \frac{x^2+x}{\exp(x)-1} \right)\right)^{\frac{3}{2}}$

(dies dürfen wir nur unter der Annahme, dass der Grenzwert existiert; wir verwenden dabei die Stetigkeit der Funktion $x \mapsto x^{\frac{3}{2}}$)

$ = \left(  \lim\limits_{x \to 0} \left( \frac{2x+1}{\exp(x)} \right)^{\frac{3}{2}}$

(nach de l'Hospital im Inneren)

$= \left( \frac{1}{1} \right)^{\frac{3}{2}}$

$= 1$.

> d) 0*unendlich :    x*ln (1+1/X)

Hier formst du zunächst um:

$\lim\limits_{x \to 0} \left( x \cdot \ln\left(1 + \frac{1}{x} \right) \right)$

$= \lim\limits_{x \to 0} \frac{\ln\left(1 + \frac{1}{x} \right)}{\frac{1}{x}}$

$= \ldots$

Jetzt noch Zähler und Nenner ableiten, geeignet kürzen und dann den Grenzwert bilden...

Das solltest du schaffen. :-)

Liebe Grüße
Julius


Bezug
                                
Bezug
0/0 : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mo 25.10.2004
Autor: FLy

Vielen Dank versuche es gleich mal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de