www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - 1. Ableitung
1. Ableitung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Fr 07.07.2006
Autor: Thome

Aufgabe 1
Ermitteln Sie die 1.Ableitung folgender Funktion:

y = [mm] arctan\wurzel{1+x²} [/mm]

Aufgabe 2
y = x^ln(x)

Hi,
ich habe mal wieder zwei Ableitungen gerechnet und wollte fragen ob die so richtig sind?
Währe echt nett wenn die mal wieder jemand nachrechnen könnte!!
Hier meine Lösungen:

1. y' = [mm] \bruch{1}{2+x²} [/mm]

2. y' = (2*ln(x))*x^(ln(x)-1)             (ln(x)-1) soll hoch sein falls er das nicht anzeigt!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
1. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Fr 07.07.2006
Autor: Bastiane

Hallo!

> Ermitteln Sie die 1.Ableitung folgender Funktion:
>  
> y = [mm]arctan\wurzel{1+x²}[/mm]
>  y = x^ln(x)
>  Hi,
>  ich habe mal wieder zwei Ableitungen gerechnet und wollte
> fragen ob die so richtig sind?
>  Währe echt nett wenn die mal wieder jemand nachrechnen
> könnte!!
>  Hier meine Lösungen:
>  
> 1. y' = [mm]\bruch{1}{2+x²}[/mm]

Also ich erhalte hier: [mm] f'(x)=\bruch{2x}{(2+x^2)(2\wurzel{1+x^2})}. [/mm] Wenn du das bis zu deinem Ergebnis vereinfachen kannst, wird's wohl stimmen. :-)

> 2. y' = (2*ln(x))*x^(ln(x)-1)             (ln(x)-1) soll
> hoch sein falls er das nicht anzeigt!!

Was hier angezeigt wird, kannst du dir ganz einfach vor dem Senden mit der "Vorschau-Funktion" selbst anschauen. :-)
Und außerdem kannst du auch unseren Formeleditor benutzen!!!

Mein Computer erhält hier: [mm] $\bruch{2}{x}*\ln [/mm] x [mm] x^{\ln x}$. [/mm] Wie er darauf kommt, weiß ich allerdings gerade nicht. [kopfkratz]

Viele Grüße
Bastiane
[cap]




Bezug
                
Bezug
1. Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:27 Sa 08.07.2006
Autor: Thome

Aufgabe
Bilden Sie die erste Ableitung von:
[mm] x^{ln(x)} [/mm]


Hi,

ich habe jetzt drei Lösungen für die Funktion und wollte fragen ob mir jemand das nochmal nachrechnen könnte damit ich vielleich einmal ein Lösung habe die sich mit einer denkt von meinen!
Hier ist meine Lösung:
y' = [mm] (2*ln(x))*x^{(ln(x)-1)} [/mm]

Ich habe diese Frage in keinem anderen Forum auf einer anderen Seite gestellt!

Bezug
                        
Bezug
1. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Sa 08.07.2006
Autor: piet.t

Hallo,

mir scheint, Du hast da mit der Abelitungsregel für Potenzen gearbeitet: [mm](x^n)' = n*x^{n-1}[/mm]. Allerdings darfst Du das hier nicht, weil der Exponent [mm]\ln x[/mm] ja auch noch von x abhängt.

Der Trick bei der Aufgabe ist, das ganze in eine Exponentialfunktion umzuschreiben:
[mm]x^{\ln x} = e^{ln \left(x^{\ln x}\right)}[/mm]
Auf den Ausdruck kann man dann die Logarithmusgesetze anwenden und dann mit der Kettenregel ableiten, ich bekomme dann sogar das gleiche Ergebnis wie Bastianes Computer. Probier das erst noch mal selbst, wenn es noch Probleme gibt kannst Du ja nochmal nachfragen.

...apropos Kettenregel: bei der ersten Aufgabe scheinst Du das Nachdifferenzieren vergessen zu haben, denn Bastianes Ergebnis und Deines sind sicher nicht gleich.

Gruß

piet


Bezug
                        
Bezug
1. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Sa 08.07.2006
Autor: Walde

hi Thome,

diese Frage wurde übrigens hier von dir schonmal gestellt und auch schonmal beantwortet.

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de