www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - 1. Ableitung
1. Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 07.02.2009
Autor: isabell_88

Aufgabe
Bilden Sie unter Benutzung der Differentiationsregeln jeweils die 1. ableitungsfunktion.

b) [mm] f:x\to \bruch{x^{7}}{2} -\bruch{5}{x}+\bruch{1}{4x^{4}}+\wurzel{x} [/mm]
c) f:x [mm] \to \bruch{9}{\wurzel[4]{x}^{5}} -\wurzel{2} [/mm]
[mm] f)f:x\to (4x+3)(10x^4+25x^2-11)^2 [/mm]

zu b) also, die ableitung von [mm] \wurzel{x} [/mm] kenne ich, mir geht es um die brüche.
normalerweise würde ich da die differentiationsregel für den quotienten zweier funktionen anwenden und den bruch jeweils als eigene funktion ansehen. auf diese weise komme ich aber bei 2,5 und 1 jeweils auf die ableitung 0. ich nehme daher an, dass es nicht richtig ist, das ich bei allen brüchen entweder im zähler oder im nenner 0 rausbekomme.

c) das gleiche problem habe ich bei der 9 im zähler beim 1. bruch.
f'( [mm] \wurzel[4]{x}^{5}) [/mm] wäre bei mir [mm] x^{\bruch{5}{4}}= [/mm]
[mm] \bruch{5}{4}x^{\bruch{5}{4}-1}=\bruch{5}{4}x^\bruch{1}{4} [/mm]
[mm] f'\wurzel{2}= [/mm] 0


f) hier würde ich erst [mm] (10x^4+25x^2-11)^2 [/mm] ausrechnen und anschließend mit (4x+3)multiplizieren und dieses ergebnis würde ich dann ableiten.

bitte erklärt mir was ich falsch mache und wie ich auf die richtigen ergebnisse komme

        
Bezug
1. Ableitung: Aufgabe f.)
Status: (Antwort) fertig Status 
Datum: 15:16 Sa 07.02.2009
Autor: Loddar

Hallo isabell!



> f) hier würde ich erst [mm](10x^4+25x^2-11)^2[/mm] ausrechnen und
> anschließend mit (4x+3)multiplizieren und dieses ergebnis
> würde ich dann ableiten.

Um Himmels Willen! [eek] Viel zu umständlich und fehleranfällig.

Verwende die MBProduktregel in Verbindung mit der MBKettenregel.


Gruß
Loddar


Bezug
        
Bezug
1. Ableitung: Aufgabe b.) und c.)
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 07.02.2009
Autor: Loddar

Hallo isabell!


Du kannst hier die Brüche jeweils umformen (durch anwendung der MBPotenzgesetze) und anschließend die Ableitung mit der MBPotenzregel ermitteln:

[mm] $$-\bruch{5}{x} [/mm] \ = \ [mm] -5*x^{-1}$$ [/mm]
[mm] $$\bruch{1}{4x^{4}} [/mm] \ = \ [mm] \bruch{1}{4}*x^{-4}$$ [/mm]
[mm] $$\wurzel{x} [/mm] \ = \ [mm] x^{\bruch{1}{2}}$$ [/mm]
[mm] $$\bruch{9}{\wurzel[4]{x}^{5}} [/mm] \ = \ [mm] 9*x^{-\bruch{5}{4}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 07.02.2009
Autor: isabell_88

und wie mache ich das bei [mm] \bruch{x^{7}}{2}? [/mm]

Bezug
                        
Bezug
1. Ableitung: einfacher
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 07.02.2009
Autor: Loddar

Hallo isabell!


Hier ist es doch noch einfacher:
[mm] $$\bruch{x^7}{2} [/mm] \ = \ [mm] \bruch{1}{2}*x^7$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 07.02.2009
Autor: isabell_88

gut, dann probiere ich das ganze mal:

[mm] b)\bruch{1}{2}x^{7}-5x^{-1}+\bruch{1}{4}x^{-4}+x^\bruch{1}{2} [/mm]

f'(x)= [mm] \bruch{1}{2}*7x^6+5x^{-2}-1x^{-5}+\bruch{1}{2}x^{-\bruch{1}{2}} [/mm]

ist das denn richtig?

Bezug
                        
Bezug
1. Ableitung: richtig
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 07.02.2009
Autor: Adamantin


> gut, dann probiere ich das ganze mal:
>  
> [mm]b)\bruch{1}{2}x^{7}-5x^{-1}+\bruch{1}{4}x^{-4}+x^\bruch{1}{2}[/mm]
>  
> f'(x)=
> [mm]\bruch{1}{2}*7x^6+5x^{-2}-1x^{-5}+\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]
>  
> ist das denn richtig?

[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de