www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - 1. Ableitung bestimmen
1. Ableitung bestimmen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Sa 03.11.2012
Autor: bobiiii

Aufgabe
Bestimmen Sie die (erste) Ableitung der folgenden Funktionen:

[mm]a) f(x)=\wurzel{ln(tan(x))}[/mm]
[mm]b) f(x)=sin^2(x)*\wurzel{x^3+1}[/mm]

(Der Definitionsbereich braucht nicht diskutiert zu werden.)


Hallo allerseits!

Ich bräuchte bitte Hilfe bei diesen Beispielen.

Bei b) habe ich schon die Ableitung.

[mm] f'(x)=sin(2x)*\wurzel{x^3+1} + \bruch{sin^2(x)*3x^2}{2*\wurzel{x^3+1}} [/mm]
Stimmt diese?

Bei a) kenn ich mich nicht wirklich aus...
Welche Ableitungsregeln kann ich da verwenden? Konstanregel? Produktregel? Kettenregel? Mir leuchtet es nicht ein...

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (http://www.onlinemathe.de/forum/Erste-Ableitung-bilden-73),


        
Bezug
1. Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Sa 03.11.2012
Autor: M.Rex

Hallo

> Bestimmen Sie die (erste) Ableitung der folgenden
> Funktionen:
>  
> [mm]a) f(x)=\wurzel{ln(tan(x))}[/mm]
>  [mm]b) f(x)=sin^2(x)*\wurzel{x^3+1}[/mm]
>  
> (Der Definitionsbereich braucht nicht diskutiert zu
> werden.)
>  Hallo allerseits!
>  
> Ich bräuchte bitte Hilfe bei diesen Beispielen.
>  
> Bei b) habe ich schon die Ableitung.
>  
> [mm]f'(x)=sin(2x)*\wurzel{x^3+1} + \bruch{sin^2(x)*3x^2}{2*\wurzel{x^3+1}}[/mm]

Das ist korrekt.

>  
> Stimmt diese?
>  
> Bei a) kenn ich mich nicht wirklich aus...
>  Welche Ableitungsregeln kann ich da verwenden?
> Konstanregel? Produktregel? Kettenregel? Mir leuchtet es
> nicht ein...


Die doppelte Kettenregel:

Hier also:

[mm]f'(x)=\overbrace{\frac{1}{2\sqrt{\ln(\tan(x))}}}^{(\sqrt{\Box})^{'}}\cdot\overbrace{\frac{1}{\tan(x)}}^{(\ln(\Box))'}\cdot\overbrace{\frac{1}{\cos^{2}(x)}}^{(\tan(\Box))'}[/mm]

Marius

Bezug
                
Bezug
1. Ableitung bestimmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:48 Sa 03.11.2012
Autor: bobiiii

Danke für die schnelle Antwort!

> Hier also:
>  
> [mm]f'(x)=\overbrace{\frac{1}{2\sqrt{\ln(\tan(x))}}}^{(\sqrt{\Box})^{'}}\cdot\overbrace{\frac{1}{\tan(x)}}^{(\ln(\Box))'}\cdot\overbrace{\frac{1}{\cos^{2}(x)}}^{(\tan(\Box))'}[/mm]


Bei a) verstehe ich das leider nicht so genau mit der doppelten Kettenregel, wieso wird alles [mm] \bruch{1}{...} [/mm]?
Wie funktioniert diese doppelte Kettenregel genau?



Bezug
                        
Bezug
1. Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Sa 03.11.2012
Autor: M.Rex


> Danke für die schnelle Antwort!
>  
> > Hier also:
>  >  
> >
> [mm]f'(x)=\overbrace{\frac{1}{2\sqrt{\ln(\tan(x))}}}^{(\sqrt{\Box})^{'}}\cdot\overbrace{\frac{1}{\tan(x)}}^{(\ln(\Box))'}\cdot\overbrace{\frac{1}{\cos^{2}(x)}}^{(\tan(\Box))'}[/mm]
>  
>
> Bei a) verstehe ich das leider nicht so genau mit der
> doppelten Kettenregel, wieso wird alles [mm]\bruch{1}{...} [/mm]?

Dass hier alles in den Nenner verschwindet, ist zufall:

[mm] g(z)=\sqrt{z} [/mm] hat die Ableitung
[mm] g'(x)=\frac{1}{sqrt{z}} [/mm]

Nun, da [mm] z(y)=\ln(y) [/mm] hier gegeben ist, brauchst du noch die innere Ableitung, also [mm] z'(y)=\frac{1}{y} [/mm]

Nun, mit [mm] y(x)=\tan(x) [/mm] brauchst du in der inneren Ableitung von z noch die innere Ableitung des Tangens, und [mm] (tan(x))'=\frac{1}{\cos^{2}(x)} [/mm]

>  
> Wie funktioniert diese doppelte Kettenregel genau?
>  
>  

Marius


Bezug
                                
Bezug
1. Ableitung bestimmen: Rückfrage 2
Status: (Frage) beantwortet Status 
Datum: 12:26 Sa 03.11.2012
Autor: bobiiii

Danke! Jetzt verstehe ich es schon fast :-)
Woher weiß ich aber, dass ich bei diesem Bsp. die doppelte Kettenregel einstetzen kann und wie funktioniert diese allgemein?

Und kann man diese noch umänderen? Ein Freund von mir hat dann so gerechnet, was ich aber nicht verstehe.
[mm] $f'(x)=\bruch{1}{2}*(ln(tan(x)))^{-\bruch{1}{2}}*(\bruch{cos(x)}{sin(x)}*\bruch{1}{cos^2(x)})$ [/mm]
[mm] $=ln(tan(x))^{-\bruch{1}{2}}*(\bruch{1}{sin(2x)})=ln(tan(x))^{-\bruch{1}{2}}*(sin(2x))^{-1}$ [/mm]

Bezug
                                        
Bezug
1. Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Sa 03.11.2012
Autor: abakus


> Danke! Jetzt verstehe ich es schon fast :-)
>  Woher weiß ich aber, dass ich bei diesem Bsp. die
> doppelte Kettenregel einstetzen kann und wie funktioniert
> diese allgemein?
>  
> Und kann man diese noch umänderen? Ein Freund von mir hat
> dann so gerechnet, was ich aber nicht verstehe.
>  
> [mm]f'(x)=\bruch{1}{2}*(ln(tan(x)))^{-\bruch{1}{2}}*(\bruch{cos(x)}{sin(x)}*\bruch{1}{cos^2(x)})[/mm]

Hallo,
in der hinteren Klammer kürzt sich der Kosinus einmal raus.
Wenn der Gesamtterm mit 2 erweitert wird, dann
- wird aus dem Faktor 1/2 eine 1
- entsteht hinten im Nenner 2*sin(x)*cos(x), was nach Doppelwinkelformel gleich sin(2x) ist.
Gruß Abakus

>  
> [mm]=ln(tan(x))^{-\bruch{1}{2}}*(\bruch{1}{sin(2x)})=ln(tan(x))^{-\bruch{1}{2}}*(sin(2x))^{-1}[/mm]


Bezug
                                                
Bezug
1. Ableitung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Sa 03.11.2012
Autor: bobiiii

Danke! Aber wie weiß ich, dass ich eine doppelte Kettenregel verwenden kann?
Ich wär nämlich nie draufgekommen.


Bezug
                                                        
Bezug
1. Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 03.11.2012
Autor: Diophant

Hallo,

zweifache Verkettung -> doppelte Kettenregel, so einfach ist das.

Deine erste Funktion ust vom Typ

f(x)=u(v(w(x)) bzw.

[mm] f=u\circ{v}\circ{w} [/mm]

mit:

w(x)=tan(x)
v(w)=ln(w)
[mm] u(v)=\wurzel{v} [/mm]

Der Differentialquotient sieht dann so aus:

[mm] f'(x)=\bruch{du}{dv}*\bruch{dv}{dw}*\bruch{dw}{dx} [/mm]

Vielleicht hilft dir das ja weiter.


Gruß, Diophant




Bezug
                                                                
Bezug
1. Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Sa 03.11.2012
Autor: bobiiii

Ah! Ok, Danke! So verstehe ich es glaube ich auch endlich! :.)
Ein großes Danke an alle die mir geholfen haben!!

Bezug
                                                                        
Bezug
1. Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Sa 03.11.2012
Autor: reverend

Hallo bobiiii,

> Ah! Ok, Danke! So verstehe ich es glaube ich auch endlich!

Na, schaun wir mal:

Differenziere [mm] f(x)=\sin{((\cos{(e^{x^2-x})})^2)} [/mm]

Wie oft brauchst Du da die Kettenregel?

Grüße
reverend


Bezug
                                                                                
Bezug
1. Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Sa 03.11.2012
Autor: bobiiii

Also ich würde sagen, dass ich $ sin(...) $, [mm] $(...)^2$, [/mm] $cos(...)$ und [mm] $e^{x^2-x}$ [/mm] ableiten muss.

Bezug
                                                                                        
Bezug
1. Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Sa 03.11.2012
Autor: reverend

Hallo nochmal,

> Also ich würde sagen, dass ich [mm]sin(...) [/mm], [mm](...)^2[/mm],
> [mm]cos(...)[/mm] und [mm]e^{x^2-x}[/mm] ableiten muss.

Bis dahin gut. Es fehlt noch [mm] x^2-x. [/mm] Das musst Du auch noch ableiten. Also insgesamt eine viermalige Anwendung der Kettenregel.

Grüße
reverend


Bezug
                                                                                                
Bezug
1. Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Sa 03.11.2012
Autor: bobiiii

Hallo!

Mit [mm] $e^{x^2-x}$ [/mm] habe ich ja auch gemeint, dass [mm] $x^2-x$ [/mm] abgeleitet wird, weil die Ableitung von [mm] $e^{x^2-x}$ [/mm] ist [mm] $(2x-1)*e^{x^2-x}. [/mm]
Aber Danke für den Tipp :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de