www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Deutsche Mathe-Olympiade" - 1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn")
1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn") < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn"): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 00:40 Di 23.03.2004
Autor: Stefan

Kurt fährt mit der Straßenbahn eine lange gerade Straße entlang. Plötzlich sieht er seinen Freund auf gleicher Höhe in entgegengesetzter Richtung auf dieser Straße gehen. Nach einer Minute hält die Straßenbahn. Kurt steigt aus und läuft doppelt so schnell wie sein Freund, jedoch nur mit einem Viertel der Durchschnittgeschwindigkeit der Straßenbahn hinter seinem Freund her. Nach wieviel Minuten holt er ihn ein?

        
Bezug
1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn"): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 23.03.2004
Autor: Niob

Guten Abend zusammen :-)

Ich habe mir erstmal eine Zeichnung gemacht, wie das wohl aussehen soll.
Danach kam ich auf die "Idee", dass man dies doch auch in einem Koordinatenkreuz einzeichnen könnte.
Vorher habe ich mir aber gesagt, dass:
Die Bahn in 1 Minute 100m fährt (etwas unlogisch, aber lassen wir es mal so)
Der Kurt $1/4$ so schnell ist wie die Bahn, also in 1 Minute 25m "läuft".
Der Freund $1/2$ so schnell ist wie Kurt, und somit in 1 Minute 12,5m geht.

Dann habe ich mir meine Koordinatenachse gezeichnet. $x$ sei die Zeit in Minuten, $y$ sei die Strecke in Meter.

Der Freund beginnt bei 0 Metern und 0 Minuten. Er erreicht nach 1 Minute (wie schon gesagt) 12,5m. So kann ich mir die Gleichung aufstellen:
$y = 12,5 x$

Kurt müsste eigentlich nach 1 Minute (x = 1) starten, aber um die Formel [für mich] zu vereinfachen, habe mir mir ausgerechnet, wo Kurt bei "0 Minuten" gewesen wäre (In 1 Minute "läuft" er 25m, also 100m - 25m).
So habe ich dann diese Formel aufgestellt: $y = 25x - 125 [meter] $.

Setze ich beide Gleichungen gleich, kommt am Schluss $x = 10$ raus, Kurt und sein Freund treffen sich also nach $10$ Minuten. (gerechnet, seitdem Kurt den Freund in der Bahn gesehen hat).

Wahrscheinlich habe ich das jetzt etwas kompliziert gerechnet, aber ich hoffe mal, dass es trotzdem richtig ist. Kann ich eigentlich einfach so irgendwelche Streckenangaben angeben? Ich habe nicht auspobiert, ob bei anderen Werten das gleiche Ergebnis herauskommt.

Ich bin mal auf Kommentare gespannt ;-)

Gruß, Niob

Bezug
                
Bezug
1. DDR-Mathe-Olympiade, 1961, Klasse 9, Stufe 3 ("Straßenbahn"): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Di 23.03.2004
Autor: Stefan

Lieber Niob!

Ja, deine Lösung ist richtig, aber man kann sie auch ohne konkrete Annahmen über die Geschwindigkeiten rechnen. Nehmen wir einmal an die Geschwindigkeit der Bahn sei [mm]v_0[/mm], dann ist die Geschwindigkeit von Kurt gerade [mm]\frac{1}{4}\, v_0[/mm] und die Geschwindigkeit des Freundes [mm]\frac{1}{8}\, v_0[/mm].

Nun starten beide im Nullpunkt. Stell dir vor, dass der Freund "in die Richtung der positiven Zahlen" läuft. Dann ist die Strecke, die der Freund in [mm]t[/mm] Minuten läuft, gerade

[mm]\frac{1}{8}\, v_0[/mm].

Die Strecke, die Kurt läuft, ist gerade (weil er erst eine Minute lang mit der Geschwindigkeit [mm]v_0[/mm] in die "Richtung der negativen Zahlen fährt" und dann [mm]t-1[/mm] Minuten lang mit der Geschwindigkeit [mm]\frac{1}{4}\, v_0[/mm] in die "Richtung der positiven Zahlen" läuft):

[mm]-v_0 \cdot 1+ \frac{1}{4}\, v_0\cdot (t-1)[/mm].

Gesucht ist also dasjenige [mm]t[/mm], für das

[mm]\frac{1}{8}\, v_0 \cdot = -v_0 + \frac{1}{4}\, v_0 \cdot (t-1)[/mm]

gilt. Löst man das dann nach [mm]t[/mm] auf, erhält man [mm]t=10[/mm].

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de