www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - 1. Ordnung durch Substitution
1. Ordnung durch Substitution < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ordnung durch Substitution: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:27 Mo 03.02.2014
Autor: Morph007

Aufgabe
Lösen Sie folgende DGL durch lineare Substitution:

[mm] $xy'=y+\wurzel{x^2+y^2} [/mm]

Ich habe leider keinerlei Ansatz wie ich diese lösen soll.

Zuvor hatte ich die Aufgabe [mm] $y'=(x+y)^2$ [/mm] mit dem Anfangswertproblem y(0)=1

Da war die Substitution natürlich einfach, aber hier scheitere ich schon.

        
Bezug
1. Ordnung durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Mo 03.02.2014
Autor: fred97


> Lösen Sie folgende DGL durch lineare Substitution:
>  
> [mm]$xy'=y+\wurzel{x^2+y^2}[/mm]
>  Ich habe leider keinerlei Ansatz wie ich diese lösen
> soll.
>  
> Zuvor hatte ich die Aufgabe [mm]y'=(x+y)^2[/mm] mit dem
> Anfangswertproblem y(0)=1
>  
> Da war die Substitution natürlich einfach, aber hier
> scheitere ich schon.

Für x>0 haben wir

[mm] $y'=\bruch{y}{x}+\wurzel{1+(\bruch{y}{x})^2}$ [/mm]

Setze [mm] z:=\bruch{y}{x} [/mm]

FRED


Bezug
                
Bezug
1. Ordnung durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mo 03.02.2014
Autor: Morph007

Okay, soweit verstehe ich die Substitution

Dadurch bekomme ich:

[mm] $u=\bruch{y}{x}$ [/mm]

[mm] $u'=y'=u+\wurzel{1+u^2}$ [/mm]

[mm] $\bruch{du}{dx} [/mm] = [mm] u+\wurzel{1+u^2}$ [/mm]

Wie kann ich denn hier jetzt weiter vorgehen?
Meine Idee wäre nun
[mm] $\bruch{du}{u}= 1+\wurzel{1+u^2}dx$ [/mm]
habe aber das Gefühl, dass das falsch ist.

Bezug
                        
Bezug
1. Ordnung durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mo 03.02.2014
Autor: fred97


> Okay, soweit verstehe ich die Substitution
>  
> Dadurch bekomme ich:
>  
> [mm]u=\bruch{y}{x}[/mm]
>  
> [mm]u'=y'=u+\wurzel{1+u^2}[/mm]

Wie kommst Du auf u'=y'  ????

Es ist y'=u'x+u, also

[mm] u'x=\wurzel{1+u^2} [/mm]

FRED

>  
> [mm]\bruch{du}{dx} = u+\wurzel{1+u^2}[/mm]
>  
> Wie kann ich denn hier jetzt weiter vorgehen?
>  Meine Idee wäre nun
>  [mm]\bruch{du}{u}= 1+\wurzel{1+u^2}dx[/mm]
>  habe aber das Gefühl,
> dass das falsch ist.


Bezug
                                
Bezug
1. Ordnung durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Mo 03.02.2014
Autor: Morph007


> Es ist y'=u'x+u

Wie kommst Du da drauf?

Bezug
                                        
Bezug
1. Ordnung durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mo 03.02.2014
Autor: fred97


> > Es ist y'=u'x+u
>  
> Wie kommst Du da drauf?

Aus
  
$ [mm] u=\bruch{y}{x} [/mm] $

folgt

y=xu.

Jetzt Produktregel !!!

FRED


Bezug
                                                
Bezug
1. Ordnung durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Mo 03.02.2014
Autor: Morph007

Vielen Dank!

Die Produktregel und ich werden glaube ich auch keine Freunde mehr...
Jedes Mal übersehe ich die.

Bezug
                                                
Bezug
1. Ordnung durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Mo 03.02.2014
Autor: Morph007

Nachdem ich nun die Produktregel angewendet habe, erhalte ich:

[mm] $u'x+u=u+\wurzel{1+u^2}$ [/mm]

[mm] $u'x=\wurzel{1+u^2}$ [/mm]

[mm] $\bruch{du}{dx}=\bruch{\wurzel{1+u^2}}{x}$ [/mm]

[mm] $\bruch{du}{\wurzel{1+u^2}}=\bruch{dx}{x}$ [/mm]

[mm] $\integral{}^{}{\bruch{du}{\wurzel{1+u^2}}}=\integral{}^{}{\bruch{dx}{x}}$ [/mm]

[mm] $u+\wurzel{1+u^2}=C*x$ [/mm]

Nun wieder rücksubstituiert

[mm] $\bruch{y}{x}+\wurzel{1+(\bruch{y}{x})^2}=C*x$ [/mm]

[mm] $y+\wurzel{x^2+y^2}=C*x^2$ [/mm]

[mm] $Cx^2-y=\wurzel{x^2+y^2}$ [/mm]

[mm] $(Cx^2-y)^2=x^2+y^2$ [/mm]

[mm] $Cx^4-2Cx^2*y+y^2=x^2+y^2$ [/mm]

Irgendwie bekomme ich keine ordentliche Lösung heraus. Wo genau mache ich jetzt noch einen Fehler?

Bezug
                                                        
Bezug
1. Ordnung durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mo 03.02.2014
Autor: fred97


> Nachdem ich nun die Produktregel angewendet habe, erhalte
> ich:
>  
> [mm]u'x+u=u+\wurzel{1+u^2}[/mm]
>  
> [mm]u'x=\wurzel{1+u^2}[/mm]
>  
> [mm]\bruch{du}{dx}=\bruch{\wurzel{1+u^2}}{x}[/mm]
>  
> [mm]\bruch{du}{\wurzel{1+u^2}}=\bruch{dx}{x}[/mm]
>  
> [mm]\integral{}^{}{\bruch{du}{\wurzel{1+u^2}}}=\integral{}^{}{\bruch{dx}{x}}[/mm]
>  
> [mm]u+\wurzel{1+u^2}=C*x[/mm]

Wie kommst Du denn darauf ???
FRED

>  
> Nun wieder rücksubstituiert
>  
> [mm]\bruch{y}{x}+\wurzel{1+(\bruch{y}{x})^2}=C*x[/mm]
>  
> [mm]y+\wurzel{x^2+y^2}=C*x^2[/mm]
>  
> [mm]Cx^2-y=\wurzel{x^2+y^2}[/mm]
>  
> [mm](Cx^2-y)^2=x^2+y^2[/mm]
>  
> [mm]Cx^4-2Cx^2*y+y^2=x^2+y^2[/mm]
>  
> Irgendwie bekomme ich keine ordentliche Lösung heraus. Wo
> genau mache ich jetzt noch einen Fehler?


Bezug
                                                                
Bezug
1. Ordnung durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Mo 03.02.2014
Autor: Morph007

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$ \integral{}^{}{\bruch{du}{\wurzel{1+u^2}}}=\integral{}^{}{\bruch{dx}{x}} $

\gdw

$ln(\wurzel{1+u^2})=ln(\bruch{C}{x}}$

$\wurzel{1+u^2}=\bruch{C}{x}$

Ich habe einfach kein Ahnung was ich da tue und wie ich weiterkommen soll...

Bezug
                                                                        
Bezug
1. Ordnung durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 03.02.2014
Autor: fred97


>
> [mm]\integral{}^{}{\bruch{du}{\wurzel{1+u^2}}}=\integral{}^{}{\bruch{dx}{x}}[/mm]
>  
> [mm]\gdw[/mm]
>  
> [mm]ln(\wurzel{1+u^2})=ln(\bruch{C}{x}}[/mm]

nein. Leite mal [mm] ln(\wurzel{1+u^2}) [/mm] ab !!!


>  
> [mm]\wurzel{1+u^2}=\bruch{C}{x}[/mm]
>  
> Ich habe einfach kein Ahnung was ich da tue und wie ich
> weiterkommen soll...


Eine Stammfunktion von [mm] \bruch{1}{\wurzel{1+u^2}} [/mm] ist arsinh(u)

FRED

Bezug
                                                                                
Bezug
1. Ordnung durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Mo 03.02.2014
Autor: Morph007

Danke, jetzt komme ich auf die gegebene Lösung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de