www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - 1/x soll abgeleitet werden
1/x soll abgeleitet werden < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1/x soll abgeleitet werden: a(x)=1/x+5x ableiten
Status: (Frage) beantwortet Status 
Datum: 17:16 Di 10.07.2012
Autor: Giraffe

Aufgabe
Best. von a(x)=1/x+5x die erste Ableitung u. forme vorher evtl. noch um!

Hallo,
gestern konnte ichs nicht - aber jetzt fällts mir wieder ein u. ich möchte mich bei euch vergewissern:
a(x)=1/x+5x
a ´(x)= x^(-2)+5
richtig?
Danke u. Gruß
Sabine

        
Bezug
1/x soll abgeleitet werden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Di 10.07.2012
Autor: fred97


> Best. von a(x)=1/x+5x die erste Ableitung u. forme vorher
> evtl. noch um!
>  Hallo,
>  gestern konnte ichs nicht - aber jetzt fällts mir wieder
> ein u. ich möchte mich bei euch vergewissern:
>  a(x)=1/x+5x
> a ´(x)= x^(-2)+5
>  richtig?

Ne, nicht ganz. Die Ableitung von 1/x ist

         $- [mm] \bruch{1}{x^2}$ [/mm]


Gruß von FRED (der, der an der Tankstelle immer Eis holt)


>  Danke u. Gruß
>  Sabine


Bezug
                
Bezug
1/x soll abgeleitet werden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 10.07.2012
Autor: Giraffe

Hallo Fred,

ich habe deine Korrektur nicht sofort begriffen, das lag daran, dass ich
mich "nur" verschrieben hatte, denn ich wollte es richtig schreiben

[mm] a(x)=\bruch{1}{x}+5x [/mm]

a ´ [mm] (x)=\bruch{-1}{x^2}+5 [/mm]

Ich habe a(x) geplottet u. bin ganz erstaunt, denn sowas habe ich noch nie gesehen.
[Dateianhang nicht öffentlich]
Zu welcher Sorte von Fkt. gehört die?

Und zu welcher Sorte gehört a ´(x)?
Es könnte sein, dass ich das wissen müsste, aber dann habe ich es vergessen. Wenn du mir nochmal auf die Sprünge helfen könntest?
DANKE
Gruß
Sabine

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
1/x soll abgeleitet werden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Di 10.07.2012
Autor: Adamantin


> Hallo Fred,
>  
> ich habe deine Korrektur nicht sofort begriffen, das lag
> daran, dass ich
>  mich "nur" verschrieben hatte, denn ich wollte es richtig
> schreiben
>  
> [mm]a(x)=\bruch{1}{x}+5x[/mm]
>  
> a ´ [mm](x)=\bruch{-1}{x^2}+5[/mm]

Na dann stimmt ja jetzt alles ;)

>  
> Ich habe a(x) geplottet u. bin ganz erstaunt, denn sowas
> habe ich noch nie gesehen.

Ist doch eine ganz normale gebrochenrationale Funktion!
[mm] $1/x+5x=1/x+5x^2/x=\bruch{1+5x^2}{x}$ [/mm]

Siehst doch auch direkt an der Zerlegung 1/x+5x, wie die Funktion verläuft: Für große x-Werte wird 1/x gegen 0 gehen und nur der lineare Term übrig bleiben, was dazu führt, dass 5x die Asymptote ist und auch den Verlauf der Fkt für große x-Werte bestimmt (und hier auch für kleine)

>  [Dateianhang nicht öffentlich]
>  Zu welcher Sorte von Fkt. gehört die?
>  
> Und zu welcher Sorte gehört a ´(x)?

Ebenfalls zu gebrochenrationalen, da du alles auf einen Bruch bringen kannst. Aber es ist ja eine ganz normale gerade Funktion 2. Grades, die um 5 Einheiten auf der y-Achse verschoben ist! also [mm] 1/x^2 [/mm] solltest du wirklich kennen ;) Ist die Hyperbel links und rechts der y-Achse, der Schornstein ;) Hier allerdings durch das Minuszeichen an der x-Achse gespiegelt.

>  Es könnte sein, dass ich das wissen müsste, aber dann
> habe ich es vergessen. Wenn du mir nochmal auf die Sprünge
> helfen könntest?
>  DANKE
>  Gruß
>  Sabine


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de