www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - 1x1 Matrix partiell stetig?
1x1 Matrix partiell stetig? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1x1 Matrix partiell stetig?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:03 Di 12.05.2009
Autor: Newbie89

Aufgabe
Ist diese Matrix partiell stetig diffbar?

Guten Tag Leute,

ich habe eine Aufgabe bekommen, die im folgenden so aussieht:

[mm] f(\vec{x},\vec{y}) [/mm] = [mm] \vec{x}^{T} [/mm] A [mm] \vec{y} [/mm]

Wobei A eine reelle n [mm] \times [/mm] m - Matrix ist.

Meine Feststellung ist, dass egal, was für n- bzw. m-Werte eingesetzt werden, es kommt immer eine 1 [mm] \times [/mm] 1 Matrix heraus.

Aber was hat es für eine Bedeutung hinsichtlich der Stetigkeit, Differenzierbarkeit und partielle Diffbarkeit?

Gruß Fabian

        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 12.05.2009
Autor: leduart

Hallo
ne [mm] 1\times1 [/mm] Matrix ist doch ne Zahl, meinst du das.
kannst du die Aufgabe genauer schreiben?
Gruss leduart

Bezug
                
Bezug
1x1 Matrix partiell stetig?: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:22 Di 12.05.2009
Autor: Newbie89

Die Aufgabenstellung lautet:

Sei A eine reelle n [mm] \times [/mm] m-Matrix, also A [mm] \in \IR^{n \times m} [/mm] . Betrachten Sie die Abbildung f: [mm] \IR^{n} \to \IR^{m}, [/mm] die durch

[mm] f(\vec{x},\vec{y}) [/mm] = [mm] \vec{x}^{T} [/mm] A [mm] \vec{y} [/mm] definiert wird.

Untersuchen Sie f auf Stetigkeit, (totale) Differenzierbarkeit und partielle Differenzierbarkeit. Ist f stetig partiell differenzierbar?


Bezug
                        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 12.05.2009
Autor: Marcel

Hallo,

> Die Aufgabenstellung lautet:
>  
> Sei A eine reelle n [mm]\times[/mm] m-Matrix, also A [mm]\in \IR^{n \times m}[/mm]
> . Betrachten Sie die Abbildung f: [mm]\IR^{n} \to \IR^{m},[/mm] die
> durch
>
> [mm]f(\vec{x},\vec{y})[/mm] = [mm]\vec{x}^{T}[/mm] A [mm]\vec{y}[/mm] definiert wird.
>  
> Untersuchen Sie f auf Stetigkeit, (totale)
> Differenzierbarkeit und partielle Differenzierbarkeit. Ist
> f stetig partiell differenzierbar?

  
da stimmt immer noch etwas nicht. Denn mit
[mm] $$f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}$$ [/mm]
sollte [mm] $\vec{x} \in \IR^{n}$ [/mm] und [mm] $\vec{y} \in \IR^m$ [/mm] sein, also wäre [mm] $f\,$ [/mm] eine Abbildung [mm] $$\IR^n \times \IR^m \to \IR\,.$$ [/mm]

Dann könnte natürlich auch $f: [mm] \IR^{n+m} \to \IR$ [/mm] auffassen und sich dann mit der Differenzierbarkeit beschäftigen. Oder geht es um Differenzierbarkeit bzg. [mm] $\vec{x}$? [/mm]

Was jedenfalls gilt, und das wirst Du sicher bestätigen können:
[mm] $$\vec{x}A\vec{y}=\sum_{j=1}^m \sum_{k=1}^n a_{k,j}x_k y_j\,,$$ [/mm]
wenn [mm] $A=(a_{k,j})_{\substack{k=1,\,\ldots,\,n\\j=1,\,\ldots,\,m}}\,.$ [/mm]

Also: Es ist $f: [mm] \IR^n \times \IR^m \to \IR\,,$ [/mm] und sicher nicht $f: [mm] \IR^n \to \IR^m\,.$ [/mm]

Vll. geht es doch um
$$f: [mm] \IR^n \to \IR^m$$ [/mm]
mit [mm] $f(\vec{x}):=\vec{x}^TA$? [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
1x1 Matrix partiell stetig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Di 12.05.2009
Autor: Newbie89

da stimmt immer noch etwas nicht. Denn mit
[mm] $$f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}$$ [/mm]
sollte [mm] $\vec{x} \in \IR^{n}$ [/mm] und [mm] $\vec{y} \in \IR^m$ [/mm] sein, also wäre [mm] $f\,$ [/mm] eine Abbildung [mm] $$\IR^n \times \IR^m \to \IR\,.$$ [/mm]

Genau das war mein Fehler, habe vergessen und nicht dabei bedacht, dass die Abbildung nach [mm] \IR [/mm] definiert wurde.

Aber wie mache ich das weiter bzgl. der Aufgabenstellung?

Bezug
                                        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Mi 13.05.2009
Autor: Marcel

Hallo,

> da stimmt immer noch etwas nicht. Denn mit
>  [mm]f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}[/mm]
>  sollte [mm]$\vec{x} \in \IR^{n}$[/mm]
> und [mm]$\vec{y} \in \IR^m$[/mm] sein, also wäre [mm]$f\,$[/mm] eine
> Abbildung [mm]\IR^n \times \IR^m \to \IR\,.[/mm]
>
> Genau das war mein Fehler, habe vergessen und nicht dabei
> bedacht, dass die Abbildung nach [mm]\IR[/mm] definiert wurde.
>  
> Aber wie mache ich das weiter bzgl. der Aufgabenstellung?

wenn ich die Aufgabe nicht fehlinterpretiere, so kannst Du
[mm] $$f(x_1,\,\ldots,\,x_n,y_1,\,\ldots,\,y_m)=\vec{x}A\vec{y}=\sum_{j=1}^m \sum_{k=1}^n a_{k,j}x_k y_j\,, [/mm] $$
schreiben und nun vielleicht zunächst die Jacobimatrix von [mm] $f\,$ [/mm] berechnen (was hier speziell der transponierte Gradient von [mm] $f\,$ [/mm] ist).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de