www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - 2-Stellige Relation R auf M
2-Stellige Relation R auf M < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-Stellige Relation R auf M: rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:09 So 20.02.2011
Autor: irishtobe

Aufgabe
Gegeben ist die Menge M = {a,b,c}
Kann eine 2-stellige Relation R auf der menge M symmetrisch und antisymmetrisch sein? Falls nein Antwort Begründen, falls ja, Relation angeben.

[mm] \vee [/mm] x,y [mm] \in [/mm] M: xRy -> yRx     sym.
[mm] \vee [/mm] x,y [mm] \in [/mm] M: (xRx [mm] \wedge [/mm] yRx) -> x=y   antisymm.

Ich hätte hier gesagt nein, da bei der symmetrie die Elemente gespiegelt werden, d.h wenn ich ein (a,b) habe auch ein (b,a) haben muss. Jedoch ist das in der antisymmetrie nicht erlaubt, denn es herrscht keine symmetrie - was erlaubt wäre z.b. (a,a)

Stimmt meine Begründung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2-Stellige Relation R auf M: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 So 20.02.2011
Autor: kamaleonti

Hallo,

willkommen im Forum!

> Gegeben ist die Menge M = {a,b,c}
>  Kann eine 2-stellige Relation R auf der menge M
> symmetrisch und antisymmetrisch sein? Falls nein Antwort
> Begründen, falls ja, Relation angeben.
>  [mm]\vee[/mm] x,y [mm]\in[/mm] M: xRy -> yRx     sym.

>  [mm]\vee[/mm] x,y [mm]\in[/mm] M: [mm] (xR\red{y}[/mm]  [mm]\wedge[/mm] yRx) -> x=y   antisymm.

>  
> Ich hätte hier gesagt nein, da bei der symmetrie die
> Elemente gespiegelt werden, d.h wenn ich ein (a,b) habe
> auch ein (b,a) haben muss. Jedoch ist das in der
> antisymmetrie nicht erlaubt, denn es herrscht keine
> symmetrie - was erlaubt wäre z.b. (a,a)

Was ist mit der Relation [mm] R=\{(a,a)\}? [/mm]
Sieht für mich aus, als ob sie sowohl symmetrisch als auch antisymmetrisch ist.

Gruß


Bezug
                
Bezug
2-Stellige Relation R auf M: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:21 So 20.02.2011
Autor: irishtobe

Danke für eine Antwort.

Mit (a,a) meine das bei antisymmetrie keine symmetrie herrscht, d.h. (a,b), (b,a) darf nicht stehen aber eine reflexive Relation wie (a,a),(b,b),(c,c) kann vorhanden sein.

Wieso denkst du, dass Antisymmetrie und symmetrie herscht?

Bezug
                        
Bezug
2-Stellige Relation R auf M: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 So 20.02.2011
Autor: kamaleonti


> Danke für eine Antwort.
>  
> Mit (a,a) meine das bei antisymmetrie keine symmetrie
> herrscht, d.h. (a,b), (b,a) darf nicht stehen aber eine
> reflexive Relation wie (a,a),(b,b),(c,c) kann vorhanden
> sein.

Selbst diese Relation, die (a,a),(b,b),(c,c) enthält, ist symmetrisch. a,b,c stehen ja immer nur mit sich selbst in Relation und mit keinem anderen Element.

>  
> Wieso denkst du, dass Antisymmetrie und symmetrie herscht?

(a,a) ist im Beispiel das einzige Element der Relation. Für Symmetrie muss also nur gelten "Aus aRa [mm] \wedge [/mm] aRa folgt aRa", denn es gibt ja kein Element [mm] b\neq [/mm] a, das mit a in Relation ist.

Gruß

Bezug
                                
Bezug
2-Stellige Relation R auf M: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 So 20.02.2011
Autor: irishtobe

ah, alles klar - vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de