www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - 2-mal partielle Ableitung
2-mal partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-mal partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 25.05.2010
Autor: mathiko

Aufgabe
Betrachte die Funktion F: [mm] \IR^2->\IR, F(x,y)=x*y*\bruch{x^2-y^2}{x^2+y^2} [/mm] für (x,y) [mm] \not= [/mm] (0,0) und F(0,0)=0. Zeige, dass F überall zweimal partiell differenzierbar ist.

Hallo!

ich habe bei obiger Aufgabe folgendes Problem:

Ich habe die Ableitungen [mm] \bruch{\partial^2}{\partial y \partial x} [/mm] und [mm] \bruch{\partial^2}{\partial x \partial y} [/mm] berechnet und es kommt das Gleiche heraus.
Auch [mm] \bruch{\partial^2}{\partial x \partial x} [/mm] und [mm] \bruch{\partial^2}{\partial y \partial y} [/mm] sind nicht Null:
[mm] \bruch{\partial^2}{\partial x \partial x}=-4*xy^3*\bruch{x^2-3*y^2}{(x^2+y^2)^3} [/mm]
[mm] \bruch{\partial^2}{\partial y \partial y}=4*yx^3*\bruch{y^2-3x^2}{(x^2+y^2)^3} [/mm]
Ich bin mir nicht sicher, ob das als Beweis reicht, besonders, weil mich das         F(0,0)=0 irritiert, auch wenn dann in allen 4 Ableitungen 0 rauskommt.
Nach unserem Tutor soll F nicht 2-mal partiell differenzierbar sein, aber ich finde, dass meine Ergebnisse das Gegenteil sind.
Könntet ihr mir meinen Denkfehler aufzeigen?

Danke schon mal!!!!!!!
Grüße von mathiko

        
Bezug
2-mal partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Mi 26.05.2010
Autor: fred97

Du mußt noch $ [mm] \bruch{\partial^2f}{\partial y \partial x}(0,0) [/mm] $  und $ [mm] \bruch{\partial^2f}{\partial x \partial y}(0,0) [/mm] $ berechnen !!

Wenn Du es richtig machst, wirst Du feststellen, dass

(*)     $ [mm] \bruch{\partial^2f}{\partial y \partial x}(0,0) \ne \bruch{\partial^2f}{\partial x \partial y}(0,0) [/mm] $

ist.

Trotzdem: f ist auf [mm] \IR^2 [/mm] zweimal partiell differenzierbar.



Zu Dir und Deinem Tutor:

Falls Dein Tutor gesagt hat, f sei nicht 2-mal partiell differenzierbar, so ist er ein schlechter Tutor und gehört entlassen.

Falls Dein Tutor gesagt hat, f sei nicht 2-mal stetig partiell differenzierbar, so ist er ein guter Tutor und gehört nicht entlassen, aber Dir gehört ein Hörgerät verpasst.

Fazit: f ist 2-mal partiell differenzierbar, aber nicht 2-mal stetig partiell differenzierbar (wegen des Satzes von Schwarz und  (*))

FRED


Bezug
                
Bezug
2-mal partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Mi 26.05.2010
Autor: mathiko

Danke!
Mit dem Satz von Schwarz habe ich es jetzt hingekriegt.

Vielleicht hat unser Tutor das Richtige gemeint, aber es falsch ausgedrückt, weil´s für ihn zu einfach ist...

Grüße von mathiko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de