www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - 2.Ordnung
2.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Fr 19.11.2010
Autor: Ice-Man

Hallo,

ich habe mal eine Frage zur zu DGL 2.Ordnung.

Wenn ich gegeben habe,

y''-2y'-3y=0

dann erhalte ich ja als Lösung:

[mm] y=c_{1}e^{-x}+c_{2}e^{3x} [/mm]

Nur wenn jetzt gefragt ist, welche Lösung durch den Punkt (0;2) verläuft, und dort den Anstieg -2 hat.

Wir komme ich da auf die Lösung

[mm] y=2e^{-x} [/mm]

Na welchen Schritten muss ich da vorgehen?

Danke

        
Bezug
2.Ordnung: Gleichungssystem
Status: (Antwort) fertig Status 
Datum: 13:04 Fr 19.11.2010
Autor: Roadrunner

Hallo Ice-Man!


Stelle ein Gleichungssystem auf mit:

$y(0) \ = \ 2$

$y'(0) \ = \ -2$

Berechne hieraus nun die beiden Konstanten [mm] $c_1$ [/mm] und [mm] $c_2$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 19.11.2010
Autor: Ice-Man

Ok, das ist jetzt kein Problem.

Aber das ist "alles"?
Ich mein, den Ansatz den du geschildert hast, der bedeutet, das dort der Anstieg "-2" ist?

Bezug
                        
Bezug
2.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Fr 19.11.2010
Autor: fencheltee


> Ok, das ist jetzt kein Problem.
>  
> Aber das ist "alles"?
>  Ich mein, den Ansatz den du geschildert hast, der
> bedeutet, das dort der Anstieg "-2" ist?

das ist wie früher mit dem polynom, dass durch bestimmte punkte mit bestimmten eigenschaften soll.

Nur wenn jetzt gefragt ist, welche Lösung durch den Punkt (0;2) verläuft, und dort den Anstieg -2 hat.

durch den punkt 0;2 heisst dann y(0)=2
und DORT den anstieg hat => y'(0)=-2

wie man die anfangswerte dann verrechnet, weisst du ja sicherlich

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de