www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - 2. Thema ab Klasse 11: Geometrie I (Vektoren)
2. Thema ab Klasse 11: Geometrie I (Vektoren) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2. Thema ab Klasse 11: Geometrie I (Vektoren): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 25.09.2004
Autor: Stefan

Wieder gehe ich nach dem Buch "Problem-Solving Strategies" von Arthur Engel vor. Es ist super, kauft es euch alle! (Ich denke mit diesem - im übrigen ernstgemeinten - Aufruf kann ich Lizensierungsprobleme umgehen ;-)).

Affine Geometrie

Wir betrachten nur endlichdimensionale Anschauungsräume. Für Wettbewerbsaufgaben sind im Allgemeinen nur zwei- oder dreidimensionale Anschauungsräume relevant.  Die Punkte des jeweils betrachteten Raumes bezeichnen wir mir Großbuchstaben: $A, [mm] \, B,\, C\, \ldots$. [/mm] Einen speziellen Punkt, den Ursprung, zeichnen wir besonders aus und bezeichnen ihn mit $O$ (engl. origin=Ursprung). Die wichtigsten Abbildungen des Anschauungsraumes sind Translationen (Verschiebungen), die wir auch als Vektoren bezeichnen.

Eine Translation $T$ ist eindeutig durch einen Punkt $X$ und die Abbildungsvorschrift $T(X)=Y$ bestimmt. Die Translation, die den Punkt $A$ nach $B$ abbildet, wird mit [mm] $\vec{AB}$ [/mm] bezeichnet. Üblicherweise ist dabei $O$ der erste Punkt und [mm] $\vec{OA}$ [/mm] die Translation, die den Ursprung auf $A$ verschiebt. Ist $O$ der erste Punkt, so schreiben wir häufig auch einfach [mm] $\vec{A}$ [/mm] statt [mm] $\vec{OA}$. [/mm] Wir identifizieren im Weiteren Punkte und ihre in $O$ beginnenden (Orts-)Vektoren und schreiben daher häufiger auch $A$ für [mm] $\vec{A}$. [/mm]

Nun definieren wird geometrisch die Addition zweier Punkte $A$ und $B$ sowie die skalare Multiplikation eines Punktes mit einem reellen Skalar $t$ wie folgt:

[wird fortgesetzt]

Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de