www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - 2D Fläche nach Transf.Matrix
2D Fläche nach Transf.Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2D Fläche nach Transf.Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Fr 09.08.2013
Autor: Moiska

Hallo liebe Mathematiker, ich habe folgende Frage:

Sagen wir ich habe eine viereckige Fläche im 3D Raum.
Die Fläche hat die Breite und Höhe =100 Einheiten.
Nun, wenn ich eine Rotation und Skalierung auf diese Fläche anwende, (die Transformationsmatrix z.B. wie folgt:
[mm] \pmat{ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 180 & 0 & 0 & 1 } [/mm]
)
wird diese zwar im 3D Raum die selbe Fläche haben (also 100x100), aber beim Betrachten des 2D Raums, der zu mir (dem Betrachter) gedreht ist, wird die Fläche kleiner sein (also von dem Viereck ist weniger zu sehen)

Kann man diese, sich in dem genannten 2D Raum ergebende Fläche berechnen?

Vielen vielen Dank
Grüsse - Moiska

*hoffe ich habe mich verständlich ausgedrückt, falls nicht sagts bitte, ich versuche es um zu formulieren"

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2D Fläche nach Transf.Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Fr 09.08.2013
Autor: leduart

Hallo
a) meinst due ein ebenes Viereck oder eine andere Fläche? im ersten Fall musst du doch nur die 4 Ecken in deine Beobachtungsebene projizieren, im anderen Fall auch noch die Randkurven.
Oder ich habe die Frage nicht verstanden.
Außerdem: wie willst du mit einer [mm] 4\times4 [/mm] matrix einen 3d Vektor drehen?
Gruss leduart

Bezug
                
Bezug
2D Fläche nach Transf.Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Fr 09.08.2013
Autor: Moiska

Hallo leduart, danke für die Antwort.
Das mit den Punkten habe ich nicht bedacht - stimmt, das ist das einfachste.

Danke vielmals

Bezug
                
Bezug
2D Fläche nach Transf.Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Mo 12.08.2013
Autor: felixf

Moin!

>  Außerdem: wie willst du mit einer [mm]4\times4[/mm] matrix einen
> 3d Vektor drehen?

Indem man [mm] $\IR^3$ [/mm] als Teilmenge vom projektiven Raum [mm] $\mathbb{P}^3$ [/mm] auffasst und die Matrix als Transformation vom [mm] $\mathbb{P}^3$. [/mm] Das wird in der Computergraphik noch häufig so gemacht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de