www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - 2mal Spiegeln = Translation
2mal Spiegeln = Translation < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2mal Spiegeln = Translation: Idee
Status: (Frage) überfällig Status 
Datum: 23:05 Mo 14.12.2015
Autor: erdbeermilch

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Seien $G_1\parallel G_2$ zwei parallele Geraden der euklidischen affinen Ebene $X$ und $\sigma_{G_1}$ bzw. $\sigma_{G_2}$ die zugehörigen Spieglungen. Zeigen Sie, dass $\sigma_{G_1}\circ \sigma_{G_2}$ eine Translation ist.




Also es wird denke ich mal die Definition der affinen Spieglung an $Y$ benötigt:

Seien $X$ ein euklidischer affiner Raum, Y ein nicht leerer affiner Unterraum von $X,A\in Y$ und $\sigma_Y:X\to X$ eine Abbildung mit der Eigenschaft $\overrightarrow{A\sigma_Y(C)}=s_{V_Y}(\overrightarrow{AC})$ für alle C\in X. Dann ist $\overrightarrow{B\sigma_Y(C)}=s_{V_Y}(\overrightarrow{BC})$ für alle $B\in Y$ und $C\in X$.

Dabei ist $s_{V_Y}(u+v)=u-v$ mit $u\in V$ und $v\in V^{\perp}$.

Es ist also zu zeigen, dass $\sigma_{G_1}\circ \sigma_{G_2}$ eine Translation ist. Da man denke ich mal die Eigenschaften von oben irgendwie benutzen muss hab ich folgendermaßen, angefangen.

Wir wollen zeigen, dass für alle $B,C\in X$ und  gillt:

\overrightarrow{B\sigma_{G_1}\circ \sigma_{G_2}(B)}=\overrightarrow{C\sigma_{G_1}\circ \sigma_{G_2}(C)}.

Nach Vorraussetzung gilt:

$G_1\parallel G_2$ \Rightarrow V_{G_1} = V_{G_2} (aus dimensionsgründen).

Sei $A\in {G_1}$ und $B,C\in X$ beliebig, dann gilt:

$\overrightarrow{B\sigma_{G_1}\circ \sigma_{G_2}(B)}$

$=\overrightarrow{B\sigma_{G_1}(\sigma_{G_2}(B))}$

$=\overrightarrow{BA} + \overrightarrow{A\sigma_{G_1}(\sigma_{G_2}(B))}$

$=\overrightarrow{BA} + S_{V_{G_1}}(\overrightarrow{A\sigma_{G_2}(B)}})$

$=\overrightarrow{BA} + S_{V_{G_1}}(\overrightarrow{AD} \overrightarrow{D\sigma_{G_2}(B)}})$

$=\overrightarrow{BA} + S_{V_{G_1}}(\overrightarrow{AD}) + S_{V_{G_1}}( \overrightarrow{D\sigma_{G_2}(B)}})$ (Da S_V linear)

Und genau dort hört es auch auf. Ich kann nun weder $\sigma_(G_2)(D)$ dort einbringen, noch kann ich zeigen dass der Rest $0$ ist, was er ja sein müsste.
Deswegen denke ich, dass reine Dreiecksungleichung mich hier nicht zum Ziel führen wird.

Aber konkrete Aussagen über $\sigma_{G_1}\circ \sigma_{G_2}$ kann ich auch nicht treffen.
Ich hab das ganze auch mal gezeichnet, und die Aussage stimmt auf jedefall.

Kann mir evtl. jemand weithelfen?

Mfg. Erdbeermilch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2mal Spiegeln = Translation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 16.12.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de