www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra/Geometrie" - 3-D Solid im Würfel
3-D Solid im Würfel < Lineare Algebra/Geom < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3-D Solid im Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Mi 21.03.2012
Autor: Ferma

Hallo,
wie geht man vor, bei der Berechnung des kleinsten  Würfels, in den eine Halbkugel mit Radius R=1 perfekt passen soll. Mein Ansatz: Darstellung in 2-D.
Die Halbkugel als Halbkreis. Dann eine halbe Ellipse, die den Halbkreis schließt. Die kleine Halbachse zunächst R*cos 45°. Gibt es überhaupt so einen Würfel, wo die Halbkugel perfekt hineinpasst?
Gruß, Ferma

        
Bezug
3-D Solid im Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Mi 21.03.2012
Autor: Diophant

Hallo,

wozu du die Ellipse benötigst, ist mir nicht klar. Aber dass der Bogen des Halbkreises sie Seiten des Quadrates im Abstand von R*cos45° berührt (von derjenigen Ecke aus gesehen, wo jeweils der Durchmesser hinzeigt), ist ein guter Ansatz. Damit sollte man die Seitenlängen des Würfels bestimmen können.

Gruß, Diophant

Bezug
                
Bezug
3-D Solid im Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 21.03.2012
Autor: Ferma

Hallo Diophant,
ich stelle mir eine "leeren" Würfel vor. Ich lege jetzt die Halbkugel so, dass die Draufsicht ein Halbkreis ist. Den Durchmesser habe ich mit einer  Linie markiert. Die steht also senkrecht auf einer Diagonale des Würfels.(auf der mittleren Ebene des Würfels). Um die Gesamthöhe von 2 zu reduzieren, wird die HK gekippt. Dann sieht die Draufsicht so aus: ein Halbkreis und eine halbe Ellipse. Das gesuchte Quadrat(Querschnitt durch Würfel) muss diese Darstellung einschließen.
Oder sehe ich da etwa falsch? Die Hauptfrage war aber, ob es überhaupt einen Würfel gibt, der diese HK perfekt einschließt. Also den kugelförmigen Teil und Höhe. Mir ist bewusst, dass Fragen leichter ist, als Antworten. So verbleibe ich mit Achtung,
Ferma





Bezug
                        
Bezug
3-D Solid im Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 21.03.2012
Autor: Diophant

Hallo Ferma,

meinst du das so:

[Dateianhang nicht öffentlich]

Dann passt doch deine Überlegung, und wie gesagt, die Ellipse benötigt man nicht.

Gruß, Diophant

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
3-D Solid im Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mi 21.03.2012
Autor: Ferma

Das ist der Anfang. So ist die Seite etwa 1,707. Doch die Höhe der HK ist 2. Deswegen ist der WÜRFEL noch nicht gefunden. Die Höhe muss reduziert werden! Das geht, indem man die HK schräg stellt. Dann erscheint in der Aussenkontur die ELLIPSE. Bei einer Schrägstellung von 30°, wird die Höhe Wurzel(3). Dann wird das Quadrat etwas größer, um die schräggestellte HK aufnehmen zu können. etwa 1,79. Deine Zeichnung kann ergänzt werden mit einer halben Ellipse mit der kleinen Achse 0,5(1*sin(30°)). Um diese geschlossene Kontur muss das Quadrat gelegt werden. Vielleicht kann das noch optimiert werden, so dass der Würfel das kleinstmögliche Maß erhält.
Gruß, Ferma


Bezug
                                        
Bezug
3-D Solid im Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mi 21.03.2012
Autor: Diophant

Hallo Ferma,

mein Denkfehlerist mir heute Abend auch klar geworden. Gleichzeitig aber hatte ich eine Idee:

Man nehme die Maße des Würfels als fest. Gesucht ist dann die größte Halbkugel, die gerade noch in den Würfel passt. Die Lage dieser Halbkugel hast du ja schon angedeutet. Man könnte jetzt das ganze mit Vektoralgebra angehen. Die Grundfläche der Halbkugel liegt auf einer Ebene, die auf einer Raumdiagonalen des Würfels senkrecht steht. Man kann diese Ebene zunächst als Schar anlegen und dann fordern, dass der Abstand zu drei Seitenflächen gleich dem Radius des Inkreises desjenigen Dreiecks ist, welches der Würfel aus dieser Grundkreisebene ausschneidet. Das sollte per HNF irgendwie machbar sein, ebenso wie die Koordinaten der Berührpunkte.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de