www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - 3. Ableitung
3. Ableitung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Do 25.01.2007
Autor: Iduna

Hallo Leute!

Bräuchte mal eure Hilfe.

Bin gerade dabei, die Ableitungen von f(x)= [mm] x^{2} [/mm] (lnx - 1) zu berechnen.

1. + 2. Ableitung hab ich... aber bei der 3. hab ich irgendwie grad Blackout, weil die 2. so komisch aussieht. Kann ich das auch mit Produktregel machen, oder wie macht man das? bin grad etwas verwirrt

meine 2 gemachten Ableitungen:

f'(x) = x (2* lnx - 1)
f''(x)= 2 * lnx + x -1


Habt ihr ne Idee?


Gruß Iduna



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
3. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Do 25.01.2007
Autor: Herby

Hallo Iduna,

hat dich eigentlich schon jemand begrüßt [kopfkratz3]


wenn nicht,

dann

herzlich [willkommenmr]



schreib mal den Rechenweg zur zweiten Ableitung auf, da haben sich schon Fehler eingeschlichen...

f''(x)=2*ln(x)+1



Liebe Grüße
Herby

Bezug
                
Bezug
3. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Do 25.01.2007
Autor: Iduna

Hallo Herby!

Ja, ich wurde schon begrüßt, aber danke dir nochmal! ;o)



f''(x)=2*ln(x)+1  meinst du?

hm... also mein rechenweg:

u = x
u'= 1
v = 2 lnx - 1
v'= [mm] \bruch{2}{x} [/mm]

f''(x) = 1 (2 lnx - 1) + [mm] \bruch{2}{x} [/mm] * x
        = 2 lnx - 1 +x
        = 2 lnx + x -1

Bezug
                        
Bezug
3. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Do 25.01.2007
Autor: Herby

Hallo,

verstehen muss ich das jetzt nicht, oder?


> Hallo Herby!
>  
> Ja, ich wurde schon begrüßt, aber danke dir nochmal! ;o)
>  
>
>
> f''(x)=2*ln(x)+1  meinst du?
>
> hm... also mein rechenweg:
>  
> u = x
>  u'= 1
>  v = 2 lnx - 1
>  v'= [mm]\bruch{2}{x}[/mm]
>  
> f''(x) = 1 (2 lnx - 1) + [mm]\bruch{2}{x}[/mm] * x

hier würde ich sagen:

[mm] 1(2ln(x)-1)+\bruch{2x}{x}=2ln(x)-1+2=2ln(x)+1 [/mm]  ;-)


Liebe Grüße
Herby

Bezug
                                
Bezug
3. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 25.01.2007
Autor: Iduna

ok, danke dir erstmal.

Also an sich versteh ich deinen rechenweg soweit, aber wie kommst du zwischendurch auf [mm] \bruch{2x}{x} [/mm] ?

kannst mir das mal bitte erklären ;o)

war mir bei meinen berechnungen an der stelle nämlich auch nich sicher... ;)

wäre ganz lieb



Bezug
                                        
Bezug
3. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Do 25.01.2007
Autor: Herby

Hi,

das hast du doch selbst geschrieben:

[mm] \bruch{2}{x}*x=\bruch{2x}{x}=2 [/mm]


sorry, aber ich muss nun weg - es sind aber noch genug andere Helfer da :-)


Liebe Grüße
Herby

Bezug
                                                
Bezug
3. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Do 25.01.2007
Autor: Iduna

oooh, du hast recht

hab ich voll übersehen ;)
gut dann weiß ich jetzt, wo mein denkfehler war ;o)


vielen lieben Dank!!!


Liebe Grüße Iduna

Bezug
                                
Bezug
3. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Do 25.01.2007
Autor: Iduna

mir ist grad aufgefalle, dass ich ja jetzt immernoch nich weiß, wie ich die 3. Ableitung berechne *g*

kann mir da mal bitte jmd. helfen?

f''(x)= 2 lnx + 1
f'''(x)= ???

produktregel geht da doch nich oder?
hmmm....

wäre für nen tipp sehr dankbar ;-)

Bezug
                                        
Bezug
3. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 25.01.2007
Autor: Sigma

Hallo,

wozu willst du die Produktregel verwenden, wenn es doch viel einfacher geht

f''(x)=2*ln(x)+1

Beim Ableiten kann ein Faktor rausgezogen werden und eine Konstante fällt weg.

f'''(x)=2/x

mfg Sigma

Bezug
                                                
Bezug
3. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Do 25.01.2007
Autor: Iduna

:-D oh mann, hab heut wohl echt Tomaten aufn Augen...

Mach es mir immer viel schwerer + komplizierter als nötig ;-)


Vielen Dank dir, Sigma ;-)


Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de