www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - 3. Punkt vom Dreieck berechnen
3. Punkt vom Dreieck berechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3. Punkt vom Dreieck berechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 22.08.2012
Autor: ikatih

Aufgabe
Es wird ein rechtwinkliges Dreieck betrachtet. Der rechte Winkel liege im Punkt C(2;7). Der Punkt A liege in A (1;4) Die Seite a habe die
Länge a = 7 .  Das heißt, dass die x-Koordinate des Punktes B größer als
die x-Koordinate des Punktes C ist.
a) Berechnen Sie die Koordinaten des Punktes B.
b) Ermitteln Sie den Flächeninhalt des Dreiecks.

Hallo

könnte mir vielleicht jemand ein Tipp geben, wie ich weiter rechnen kann. Ich habe zuerst versucht die Seitenlängen  zu berechnen
und habe bei [mm] b=\wurzel{10} [/mm] rausbekommen.
[mm] a^2=(xB-2)^2+(yB-7)^2 c^2= (1-xB)^2+(4-y)^2 [/mm]
[mm] a^2 [/mm] habe ich nach x umgeformt xB=16-yB, wenn ich das in [mm] c^2 [/mm] einsetze habe ich 2 Unbekannte in einer Gleichung ohne Lösung =((
da xB größer als xC sein muss kann y zwischen 1-13 liegen. Durch eine Skizze komme ich auf 9, jedoch muss das auch rechnerisch gehen, oder kann man auch durch ausprobieren rausfinden oder ist alles Schwachsinn, was ich hier geschrieben habe ???

Lg


        
Bezug
3. Punkt vom Dreieck berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mi 22.08.2012
Autor: Leopold_Gast

Deine Gleichungen verstehe ich nicht.
Da du [mm]a,b[/mm] kennst, kannst du auch [mm]c[/mm] berechnen (Pythagoras).

Jetzt kannst du z.B. den Kreis um [mm]A[/mm] vom Radius [mm]c[/mm] und den Kreis um [mm]C[/mm] vom Radius [mm]a[/mm] miteinander schneiden. Oder du schneidest den Kreis um [mm]A[/mm] vom Radius [mm]c[/mm] mit der Lotgeraden von [mm]AC[/mm] durch [mm]C[/mm].

Bezug
                
Bezug
3. Punkt vom Dreieck berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:15 Mi 22.08.2012
Autor: ikatih

Ich dachte ich soll berechnen und nicht zeichnerisch lösen. Es gibt noch ein Problem, denn ich bekomme [mm] \wurzel{59} [/mm] für c raus wie sollte ich ein Kreis um A mit [mm] r=\wurzel{59} [/mm] ohne Taschenrechner zeichnen. Gibt es denn sonst keine anderen Lösungswege ?? Diese Aufgabe war mal eine Klausuraufgabe und wir dürften kein Taschenrechner benutzen und bei solchen nicht so tollen Zahlen wäre es doch schwierig in der Klausur das zu zeichnen.
LG

Bezug
                        
Bezug
3. Punkt vom Dreieck berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 22.08.2012
Autor: Diophant

Hallo,

> Ich dachte ich soll berechnen und nicht zeichnerisch
> lösen. Es gibt noch ein Problem, denn ich bekomme
> [mm]\wurzel{59}[/mm] für c raus wie sollte ich ein Kreis um A mit
> [mm]r=\wurzel{59}[/mm] ohne Taschenrechner zeichnen. Gibt es denn
> sonst keine anderen Lösungswege ??

Doch, natürlich. Stelle den Vektor AC auf, dann einen Vektor, der auf diesem senkrecht steht. Diesen Vektor musst du noch auf die Länge 7LE skalieren. Dann musst du ihn von C abziehen oder zu C addieren. Hioer ist die Aufgabe sehr schlampig gestellt. Wenn man mal die bekannte Konvention mit der Benennung der nEcken im Gegenuhrzeigesinn nimmt, dann wird sie eindeutig, was die Sache aber rein formulierungsmäßig kein Haar besser macht.

Für die Fläche brauchst du dann noch die Länge der Seite AC. Die Aufgabe steht ja auch sicherlich nicht zufällig im Unterforum Vektgorrechnung. :-)


Gruß, Diophant

Bezug
                                
Bezug
3. Punkt vom Dreieck berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:59 Mi 22.08.2012
Autor: ikatih

Ich danke Ihnen erstmal =)
ich habe sowie Sie gesagt haben versucht zu rechnen.
AB°CB=0 ich muss einen Vektor finden was orthogonal zu AB ist und den Betrag 7 ergibt. Dieser Vektor ist (6,89;-2,3). Eigentlich kommt beim Betrag -0,01 raus, aber ich lasse es mal so stehen.
(Bx;By)-(2;7)=(6,89;-2,3) ist dann kann ich doch (2;7) dazu addieren und habe dann meinen Punkt B. Stimmt es soweit ??. Ich habe versucht mit dem Vektor (3;-1) weiter zu rechnen, aber wenn ich den Betrag nehme, dann krieg ich keine 7, deshalb habe ich die Zahlen bisschen geändert. So meinten Sie doch auch oder nicht. Ich hoffe, dass es stimmt =)
MFG

Bezug
                                        
Bezug
3. Punkt vom Dreieck berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Do 23.08.2012
Autor: angela.h.b.


>  AB°CB=0 ich muss einen Vektor finden was orthogonal zu AB
> ist und den Betrag 7 ergibt.

Hallo,

entgegen der Aufgabenstellung, in welcher der rechte Winkel bei C sein soll, beschäftigst Du Dich hier offenbar mit einem Dreieck ABC, welches den rechten Winkel bei B hat.

Hast Du die Punkte umgetauft? Heißt das C aus der Aufgabenstellung bei Dir jetzt B? Oder welche Aufgabe bearbeitest Du?
Das solltest Du uns genauer verraten.

Ich beziehe mich jetzt mal auf die Originalaufgabe:

Der gesuchte Punkt B muß so beschaffen sein, daß der Vektor [mm] \overrightarrow{BC} [/mm]  senkrecht
auf [mm] \overrightarrow{AC} [/mm] steht.
Also muß gelten
[mm] \overrightarrow{AC}*\overrightarrow{BC}=0 [/mm] .
Zusätzlich  muß gelten
[mm] |\overrightarrow{BC}|=7. [/mm]

Aus der ersten Gleichung erhält man, daß [mm] \overrightarrow{BC} [/mm] ein Vielfaches von [mm] \vektor{3\\-1} [/mm] ist, daß also
[mm] \overrightarrow{BC}=k*\vektor{3\\-1}. [/mm]

Die zweite Gleichung liefert nun
[mm] 7=|\overrightarrow{BC}|=|k*\vektor{3\\-1}|=|k|*\wurzel{10}. [/mm]

Also ist [mm] k=\bruch{7}{\wurzel{10}} [/mm] oder [mm] k=-\bruch{7}{\wurzel{10}}, [/mm]

und eine Möglichkeit für [mm] \overrightarrow{BC} [/mm] ist  damit

[mm] \overrightarrow{BC}=\vektor{\bruch{7}{\wurzel{10}}*3\\\bruch{7}{\wurzel{10}}*(-1)} =\vektor{\bruch{21\wurzel{10}}{10}\\-\bruch{7\wurzel{10}}{10}} [/mm]

Dies ist - mal abgesehen vom Benennungschaos und davon, daß Du mit gerundeten Werten rechnest -  der Vektor, den Du berechnet hast.

LG Angela









> Dieser Vektor ist (6,89;-2,3).
> Eigentlich kommt beim Betrag -0,01 raus, aber ich lasse es
> mal so stehen.
>  (Bx;By)-(2;7)=(6,89;-2,3) ist dann kann ich doch (2;7)
> dazu addieren und habe dann meinen Punkt B. Stimmt es
> soweit ??. Ich habe versucht mit dem Vektor (3;-1) weiter
> zu rechnen, aber wenn ich den Betrag nehme, dann krieg ich
> keine 7, deshalb habe ich die Zahlen bisschen geändert. So
> meinten Sie doch auch oder nicht. Ich hoffe, dass es stimmt
> =)
>  MFG


Bezug
        
Bezug
3. Punkt vom Dreieck berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mi 22.08.2012
Autor: abakus


> Es wird ein rechtwinkliges Dreieck betrachtet. Der rechte
> Winkel liege im Punkt C(2;7). Der Punkt A liege in A (1;4)
> Die Seite a habe die
>  Länge a = 7 .  Das heißt, dass die x-Koordinate des
> Punktes B größer als
>  die x-Koordinate des Punktes C ist.

Hallo,
wenn du für die Gerade durch A und C mit Hilfe dieser Punkte den Anstieg bestimmst, wirst du (aus dem Steigungsdreieck) feststellen, dass diese Gerade der Anstieg 3 besitzt.
Eine dazu senkrechte Gerade hat also den Anstieg -1/3. Klar?
Ermittle die Gleichung der Geraden, die durch (2;7) geht und den Anstieg -1/3 (das entspricht dem Richtungsvektor [mm]\binom{3}{-1}[/mm]) besitzt.
Besimme dann auf dieser Geraden einen von den zwei Punkten, die zu C den Abstand 7 haben.


>  a) Berechnen Sie die Koordinaten des Punktes B.
>  b) Ermitteln Sie den Flächeninhalt des Dreiecks.

Für den Flächeninhalt brauchst du den Punkt B nicht einmal.
BC hat die Länge 7, und die Länge von der dazu senkrechten Seite AC bekommst du aus den Punktkoordinaten von A und C mit dem Pythagoras.
Der Flächeninhalt ist die Hälfte des Produktes von AC und BC.
Gruß Abakus

>  Hallo
>
> könnte mir vielleicht jemand ein Tipp geben, wie ich
> weiter rechnen kann. Ich habe zuerst versucht die
> Seitenlängen  zu berechnen
> und habe bei [mm]b=\wurzel{10}[/mm] rausbekommen.
> [mm]a^2=(xB-2)^2+(yB-7)^2 c^2= (1-xB)^2+(4-y)^2[/mm]
>  [mm]a^2[/mm] habe
> ich nach x umgeformt xB=16-yB, wenn ich das in [mm]c^2[/mm] einsetze
> habe ich 2 Unbekannte in einer Gleichung ohne Lösung =((
>  da xB größer als xC sein muss kann y zwischen 1-13
> liegen. Durch eine Skizze komme ich auf 9, jedoch muss das
> auch rechnerisch gehen, oder kann man auch durch
> ausprobieren rausfinden oder ist alles Schwachsinn, was ich
> hier geschrieben habe ???
>  
> Lg
>  


Bezug
                
Bezug
3. Punkt vom Dreieck berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Mi 22.08.2012
Autor: ikatih

Ich danke Ihnen vielmals. Ich glaube ich habe es richtig gerechnet. Meinen Lösungsweg hattte ich ja auch in meiner letzten Mitteilung geschrieben. Danke nochmal
LG  

Bezug
                        
Bezug
3. Punkt vom Dreieck berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Mi 22.08.2012
Autor: Diophant

Hallo ikatih,

leider ist besagter Lösungsweg sinnfrei, da er mit gerundeten Werten daher kommt. Das Fach heißt Analytische Geometrie, und das bedeutet u.a., dass exakt gerechnet werden muss. Auftretende Wurzeln bspw. muss man also symbolisch behandeln.

Nach wie vor hast du auch nichts dazu gesagt, wie du das Dreieck benennst, also wo der Punkt B liegen soll.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de