www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - 5 Unbekannte 2 Gleichungen
5 Unbekannte 2 Gleichungen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

5 Unbekannte 2 Gleichungen: Idee
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 23.11.2005
Autor: useratmathe

Also Aufgabe ist ganz "einfach" das LGS zu loesen:

4a + 2b + 4c + d + 3e = 4
5a + 11b + c + 7d     = 3

Nun habe ich die 1.Zeile mit - [mm] \bruch{5}{4} [/mm] multipliziert und dann mit der 2. Zeile addiert und komme dann auf ziemlich "unschoene" Brueche:

4a + 2b + 4c + d + 3e = 4
   [mm] \bruch{17}{2} [/mm] b - 4c + [mm] \bruch{23}{4} [/mm] d - [mm] \bruch{15}{4} [/mm] e = -2

Danach habe ich t1= c; t2= d; t3= e gesetzt und in der 2. Gleichung nach b umgestellt:

b = [mm] \bruch{8}{17} [/mm] t1 - [mm] \bruch{23}{34} [/mm] t2 + [mm] \bruch{15}{34} [/mm] t3 - [mm] \bruch{4}{17} [/mm]

Kann das stimmen - so komische Zahlen - oder koennte man einfacher umformen oder irgendwie anders an die Loesung gehen?
Wie gehts nun weiter?

        
Bezug
5 Unbekannte 2 Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Mi 23.11.2005
Autor: taura

Hallo useratmathe!

Ich hab deine Rechnung nicht nachgerechnet, aber um die Brüche wegzubekommen kannst du folgendes machen:

> 4a + 2b + 4c + d + 3e = 4
>  5a + 11b + c + 7d     = 3

Statt die erste Gleichung mit [mm] $-\br{5}{4}$ [/mm] zu multiplizieren, kannst du auch die erste Zeile mit -5 und die zweite mit 4 multiplizieren, und dann erste und zweite Zeile addieren. Dann bekommst du zwar etwas größere Zahlen, aber wenigstens keine Brüche mehr ;-)

Gruß taura

Bezug
                
Bezug
5 Unbekannte 2 Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Mi 23.11.2005
Autor: useratmathe

Ach ja, klar.

Aber wie mach ich nun weiter?

Bezug
                        
Bezug
5 Unbekannte 2 Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 23.11.2005
Autor: Zwerglein

Hi, useratmathe,

> Ach ja, klar.
>  
> Aber wie mach ich nun weiter?

Du hast ein Gleichungssystem mit 5 Unbekannten, aber nur 2 Gleichungen.
Demnach ist das Gleichungssystem UNTERBESTIMMT (aber schon SOOO!).
Das heißt: Eine EINdeutige Lösung gibt's nicht.
Du kannst die Lösungsmenge allenfalls in Abhängigkeit von drei Parametern darstellen.
Wie war denn eigentlich die "originale" Aufgabenstellung?

mfG!
Zwerglein

Bezug
                                
Bezug
5 Unbekannte 2 Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Mi 23.11.2005
Autor: useratmathe

Ja, das weiss ich doch, dass das LGS nicht eindeutig bestimmt ist.
Nur weiss ich nicht mehr wie es weiter ging. Ich hab zwar nach einer Variable umgestellt, aber wie schreib ich das nun in Abhaengigkeit vom Parameter t?



...und die Afg.-stellung lautet: "Loesen Sie das LGS. " Darunter standen die beiden Gleichungen, so wie ich sie ganz oben aufgeschrieben habe.

Bezug
                                        
Bezug
5 Unbekannte 2 Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Mi 23.11.2005
Autor: Zwerglein

Hi, useratmathe,

na, dann musst Du noch nach a auflösen.
Ich hoffe, es stimmt:

a = [mm] \bruch{19}{17}-\bruch{4}{17}t_{1}+\bruch{23}{68}t_{2}-\bruch{15}{68}t_{3} [/mm]

Und die Lösungsmenge schreibst Du nun vektoriell:

L = [mm] \{ \overrightarrow{x} = \vektor{\bruch{19}{17}-\bruch{4}{17}t_{1}+\bruch{23}{68}t_{2}-\bruch{15}{68}t_{3} \\ -\bruch{4}{17}+\bruch{8}{17}t_{1}-\bruch{23}{34}t_{2}+\bruch{15}{34}t_{3} \\ t_{1} \\ t_{2} \\ t_{3}} \} [/mm]

und wenn Du möchtest, klammerst Du noch die Parameter aus:

L = [mm] \{ \overrightarrow{x} = \vektor{\bruch{19}{17} \\ -\bruch{4}{17} \\ 0 \\ 0 \\ 0} + t_{1}*\vektor{-\bruch{4}{17} \\ \bruch{8}{17} \\ 1 \\ 0 \\ 0} + t_{2}*\vektor{\bruch{23}{68} \\ -\bruch{23}{17} \\ 0 \\ 1 \\ 0} + t_{3}*\vektor{-\bruch{15}{68} \\ \bruch{15}{34} \\ 0 \\ 0 \\ 1} \} [/mm]

und wenn Du nun zumindest ganzahlige Richtungsvektoren möchtest, schreibst Du:

L = [mm] \{ \overrightarrow{x} = \vektor{\bruch{19}{17} \\ -\bruch{4}{17} \\ 0 \\ 0 \\ 0} + r*\vektor{-4 \\ 8 \\ 17 \\ 0 \\ 0} + s*\vektor{23 \\ -92 \\ 0 \\ 68 \\ 0} + t*\vektor{-15 \\ 30 \\ 0 \\ 0 \\ 68} \} [/mm]

Du siehst sicher ein, dass ich hierbei keine Garantie für Rechenfehler übernehme!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de