5 Würfel, 4 gleich < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:37 Mi 30.04.2008 | Autor: | Dr.Ogen |
Aufgabe | Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf mit 5 Würfeln 4 davon die gleiche Zahl zeigen? (6-seitige, faire Würfel) |
Das entspricht ja einem Vierling (auf Anhieb) beim Kniffeln. Aber das tut nichts zur Sache
Was habt ihr denn raus? Ich krieg hier 0,93 Prozent. Allerdings stellt sich mir mal wieder die Frage ob mein Ansatz überhaupt stimmt. Da das bei kombinatorischen Problemen i.d.R. den schwierigsten und grundlegendsten Teil der Aufgabe ausmacht will ich euch nicht von vornherein auf irgendwas einschießen.
Deshalb schaut mal noch nicht nach, was die anderen gerechnet haben, sondern postet direkt eure Gedanken dazu. Meistens kommen nämlich einige verschiedene, vermeintlich richtige Lösungen dabei raus.
|
|
|
|
> Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf
> mit 5 Würfeln 4 davon die gleiche Zahl zeigen? (6-seitige,
> faire Würfel)
> Das entspricht ja einem Vierling (auf Anhieb) beim
> Kniffeln. Aber das tut nichts zur Sache
>
> Was habt ihr denn raus? Ich krieg hier 0,93 Prozent.
> Allerdings stellt sich mir mal wieder die Frage ob mein
> Ansatz überhaupt stimmt. Da das bei kombinatorischen
> Problemen i.d.R. den schwierigsten und grundlegendsten Teil
> der Aufgabe ausmacht will ich euch nicht von vornherein auf
> irgendwas einschießen.
>
> Deshalb schaut mal noch nicht nach, was die anderen
> gerechnet haben, sondern postet direkt eure Gedanken dazu.
> Meistens kommen nämlich einige verschiedene, vermeintlich
> richtige Lösungen dabei raus.
Hallo,
es wäre trotzdem angemessen, wenn du zuerst zeigst, was du dir selber wirklich überlegt hast.
So wie ich es sehe, ist der MatheRaum doch nicht einfach ein Verein von Mathe-Süchtigen,
denen du einfach eine Aufgabe hinwirfst und dann aus den angebotenen Lösungen aus-
wählen kannst !
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:00 Do 01.05.2008 | Autor: | Dr.Ogen |
Dachte mir fast, dass das die Idee hier auf Unverständis stößt.
Okay was spricht also dagegen anzunehmen, dass der erste Würfel die freie Wahl seiner 6 Seiten hat, der zweite ebenso, der dritte sich von den beiden vorigen eine Zahl aussucht und die beiden letzten dann in ihrer Wahl bestimmt sind. was auf
p(vierling) = 6/6 * 6/6 * 2/6 * 1/6 * 1/6 = 2/216 = 0,93 % führt.
offensichtliches problem der argumentationsweise: die augenzahl des ersten würfels stimmt mit der des zweiten würfels überein. dann würde gelten:
p(vierling) = ... = 1/216 = 0,46 %
also muss man noch einfließen lassen wie groß die wahrscheinlichkeit für diesen pasch ist. usw. irgendwie kann man mit dieser argumentationsweise nicht ans ziel kommen. her mit ideen!
|
|
|
|
|
> Dachte mir fast, dass das die Idee hier auf Unverständis
> stößt.
Die Idee stößt nicht auf Unverständnis, aber lies doch einmal
die Regeln zur Benützung des Forums. Eigene Vorarbeit wird
erwartet und soll vorgewiesen werden.
> Okay was spricht also dagegen anzunehmen, dass der erste
> Würfel die freie Wahl seiner 6 Seiten hat, der zweite
> ebenso, der dritte sich von den beiden vorigen eine Zahl
> aussucht und die beiden letzten dann in ihrer Wahl bestimmt
> sind. was auf
>
> p(vierling) = 6/6 * 6/6 * 2/6 * 1/6 * 1/6 = 2/216 = 0,93 %
> führt.
>
> offensichtliches problem der argumentationsweise: die
> augenzahl des ersten würfels stimmt mit der des zweiten
> würfels überein. dann würde gelten:
>
> p(vierling) = ... = 1/216 = 0,46 %
>
> also muss man noch einfließen lassen wie groß die
> wahrscheinlichkeit für diesen pasch ist. usw. irgendwie
> kann man mit dieser argumentationsweise nicht ans ziel
> kommen.
> her mit ideen!
dieser fordernde Ton ist kaum angebracht... (auch dazu: siehe Benutzungsregeln)
In der Aufgabenstellung ist etwas möglicherweise nicht ganz klar:
sollen unter den 5 gewürfelten Zahlen genau 4 gleiche Zahlen
(und dazu eine andere) sein, oder ist gemeint "mindestens 4 gleiche" ?
So wie ich es sehe, kannst du die Rechnungen selbständig durchführen.
Beachte jedoch: Im Fall "4 gleiche, 1 andere" kann die "andere" Zahl
im 1.,2.,3.,4. oder 5. Wurf erscheinen.
Al-Ch.
|
|
|
|
|
aaaaalso, möglichkeiten sind 6hoch5,günstig sind hier 6über1*5über4*6=180
180
p(4 gleiche)=---------------------------=2,3% ,ganz schön gering!
6 hoch 5
|
|
|
|