www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - (9,9) System-Problem
(9,9) System-Problem < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(9,9) System-Problem: Zu viele Lösungen, x=1&x=0
Status: (Frage) beantwortet Status 
Datum: 13:35 So 22.01.2006
Autor: PoWerBaR

Aufgabe
eigene aufgabe aus Facharbeit!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (teilweise) http://www.chemieonline.de/forum/showthread.php?p=433784#post433784 gestellt...

Hallo!
Für meine Facharbeit in der PHYSIK (noch 4 Tage Zeit ;) ) habe ich ein Problem: ich habe ein (9,9)-Gleichungssystem, welches aus einer geometrischen Anordnung entstanden ist, und demnach lösbar ist - allerdings brauche ich eine allgemeine lösung. Bei chemieonline wurde mir schon geholfen, des zu lösen und mich in MuPAD einzuarbeiten. MuPAD kann es auch lösen, wenn man Zahlen angibt, allerdings bemerkt man dann, dass es unendlich hoch 1 lösungen gibt, es wird einen lösung angegeben und dann ein vektor, wenn man dessen vielfachen addiert, gibts auch korrekte lösungen.
deshalb kann auch MuPAD den allgemeinen Fall nicht lösen...
Kann jemand das lösen, in einem Programm wo er die Wertemenge der Lösungen angeben kann? weil meine x können nur 0 oder 1 sein - und dafür gibts auch nur eine allgemeine lösung. nur die zu finden ist wohl schwierig, oder?

die matrizen sind in MuPAD formatierung:

[
[1,0,0,1,0,0,1,0,0],
[0,1,0,0,1,0,0,1,0],
[0,0,1,0,0,1,0,0,1],
[1,1,1,0,0,0,0,0,0],
[0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,1,1,1],
[0,1,0,1,0,0,0,0,0],
[0,0,1,0,1,0,1,0,0],
[0,0,0,0,0,1,0,1,0]
]

udn für die summen:

[s1,s2,s3,s4,s5,s6,s7,s8,s9]

Bitte helft mir, sonst hab ich ein kleines Problem ;)

danke, basti

        
Bezug
(9,9) System-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 So 22.01.2006
Autor: DaMenge

Hi,

sehe ich das richtig, dass du follgendes Gleichungssystem lösen willst?

[mm] $\pmat{1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&1&1&0&0&0&0&0&0\\ 0&0&0&1&1&1&0&0&0\\ 0&0&0&0&0&0&1&1&1\\ 0&1&0&1&0&0&0&0&0\\ 0&0&1&0&1&0&1&0&0\\ 0&0&0&0&0&1&0&1&0}*\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\\x_8\\x_9}=\vektor{s_1\\s_2\\s_3\\s_4\\s_5\\s_6\\s_7\\s_8\\s_9}$ [/mm]

tja, das sollte nicht so schwer zu lösen sein:
Gauß-Algo aber zuerst ein paar Zeilen vertauschen um Arbeit zu sparen:
[mm] $\pmat{1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 0&0&0&1&1&1&0&0&0\\ 0&0&1&0&1&0&1&0&0\\ 0&0&0&0&0&1&0&1&0\\ 0&0&0&0&0&0&1&1&1\\ 1&1&1&0&0&0&0&0&0\\ 0&1&0&1&0&0&0&0&0 }*\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\\x_8\\x_9}=\vektor{s_1\\s_2\\s_3\\s_5\\s_8\\s_9\\s_6\\s_4\\s_7}$ [/mm]

(lieber nochmal prüfen)

dann muss man nur eine Stelle und die letzten beiden Zeilen etwas umrechnen (in Zeilenstufenform aber immer dieselben Umformungen auch am Lösungsvektor machen) und kann dann schon die Werte für die x von unten nach oben ablesen..

versuchst du es mal ?
viele Grüße
DaMenge

Bezug
                
Bezug
(9,9) System-Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 22.01.2006
Autor: PoWerBaR

hmm könnte schon sein - allerdings sind bis jetzt 2 CAS dran gescheitert - als lösung bekommt man nämlich nen kern und ein vektor...

muss uach leider sagen: mit ein bischen nachdenken habe ich sinnvollere gleichungen gefunden, die man im kof lösen kann - und die funktionieren.

soll heißen: das problem ist zwar nicht gelöst, aber das ist egal da es nicht mehr besteht ;)

trotzdem ein danke für deine mühe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de