www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - AWP Matrix
AWP Matrix < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:14 So 08.07.2012
Autor: Ciotic

Aufgabe
Lösen Sie das AWP [mm] \vec{y^{'}}(t)= \pmat{ 1 & 2 \\ 0 & 1 }\vec{y}(t), \vec{y}(0)= \vektor{1 \\ 1}. [/mm]

Hallo zusammen. Ich habe mehrere Fragen zu dieser Aufgabe.

1. Ich habe diese schon mittels der Laplace-Transformation gelöst. Gibt es dabei irgendwelche Einschränkungen, wann ich diese nutzen darf? Oder geht das immer? Im folgenden möchte ich den Lösungsweg über die Eigenwerte nachvollziehen.  

2. Ich verstehe die Vorgehensweise nicht, wenn man doppelte Nst. hat. Kann mir das jemand Schritt für Schritt erklären?

Mein Ansatz:

[mm] EW_{1}=EW_{2}=1 [/mm]

[mm] \pmat{ 0 & 2 \\ 0 & 0}*\vektor{x_{1} \\ x_{2}}=0 [/mm]

[mm] x_{1}=1 [/mm] und [mm] x_{2}=0 [/mm] würde dieses Gls erfüllen. Dabei ist der Nullvektor kein möglicher Eigenvektor. Wir haben in der Matrix eine Nullzeile, weshalb die Dimension des Eigenraums 1 ist und es somit einen Eigenvektor geben muss. Angenommen, ich habe keine Nullzeile, dann gäbe es doch trotzdem Eigenvektoren? Die algebraische Vielfachheit der Eigenwerte ist 2 und somit ungleich der geometrischen Vielfachheit (1), weshalb die Matrix nicht diagonalisierbar ist.

Mehr weiß ich noch nicht. Wie geht man weiter vor? Wäre nett, wenn mir das jemand Schritt für Schritt erklären könnte. Danke !

        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Lösen Sie das AWP [mm]\vec{y^{'}}(t)= \pmat{ 1 & 2 \\ 0 & 1 }\vec{y}(t), \vec{y}(0)= \vektor{1 \\ 1}.[/mm]
>  
> Hallo zusammen. Ich habe mehrere Fragen zu dieser Aufgabe.
>
> 1. Ich habe diese schon mittels der Laplace-Transformation
> gelöst. Gibt es dabei irgendwelche Einschränkungen, wann
> ich diese nutzen darf? Oder geht das immer? Im folgenden
> möchte ich den Lösungsweg über die Eigenwerte
> nachvollziehen.  


Sofern es sich um homogene DGL-Systeme handelt geht das immer.



>
> 2. Ich verstehe die Vorgehensweise nicht, wenn man doppelte
> Nst. hat. Kann mir das jemand Schritt für Schritt
> erklären?
>  
> Mein Ansatz:
>  
> [mm]EW_{1}=EW_{2}=1[/mm]
>  
> [mm]\pmat{ 0 & 2 \\ 0 & 0}*\vektor{x_{1} \\ x_{2}}=0[/mm]
>  
> [mm]x_{1}=1[/mm] und [mm]x_{2}=0[/mm] würde dieses Gls erfüllen. Dabei ist
> der Nullvektor kein möglicher Eigenvektor. Wir haben in
> der Matrix eine Nullzeile, weshalb die Dimension des
> Eigenraums 1 ist und es somit einen Eigenvektor geben muss.
> Angenommen, ich habe keine Nullzeile, dann gäbe es doch
> trotzdem Eigenvektoren? Die algebraische Vielfachheit der
> Eigenwerte ist 2 und somit ungleich der geometrischen
> Vielfachheit (1), weshalb die Matrix nicht diagonalisierbar
> ist.
>
> Mehr weiß ich noch nicht. Wie geht man weiter vor? Wäre
> nett, wenn mir das jemand Schritt für Schritt erklären
> könnte. Danke !


Zunächst hast Du eine Lösung des obigen DGL-Systems:

[mm]x_{l1}\left(t\right)=\pmat{1 \\ 0}*e^{t}[/mm]

Um eine zweite linear abhängige Lösung zu finden,
wird der Ansatz so gewählt:

[mm]x_{l2}\left(t\right)=\left(\vec{a}+\vec{b}*t\right)*e^{t}[/mm]


Einsetzen dieses Ansatzes in das DGL.-System liefert:

[mm]\vec{b}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{a}[/mm]

[mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{b}[/mm]

Hier sieht man, daß [mm]\vec{b}[/mm] ein Eigenvektor ist,
und [mm]\vec{a}[/mm] ein Vektor, der durch die Matrix
[mm]\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)[/mm] auf den Vektor [mm]\vec{b}[/mm] abgebildet wird.

D.h. [mm]\vec{b}[/mm] ist ein Eigenvektor bzw. Hauptvektor der Stufe 1.

[mm]\vec{a}[/mm] ist ein Hauptvektor der Stufe 2 und erfüllt
die Gleichung

[mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)^{2}\vec{a}[/mm]


Gruss
MathePower

Bezug
                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 So 08.07.2012
Autor: Ciotic


> Zunächst hast Du eine Lösung des obigen DGL-Systems:
>  
> [mm]x_{l1}\left(t\right)=\pmat{1 \\ 0}*e^{t}[/mm]

>
Das ist soweit verständlich.
  

> Um eine zweite linear abhängige Lösung zu finden,
>  wird der Ansatz so gewählt:
>  
> [mm]x_{l2}\left(t\right)=\left(\vec{a}+\vec{b}*t\right)*e^{t}[/mm]
>

Nehme ich mal so hin.  

>
> Einsetzen dieses Ansatzes in das DGL.-System liefert:

Was setzt du wo ein? Kannst du das noch erläutern?

>  
> [mm]\vec{b}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{a}[/mm]

Wie kommst du auf die folgende Umformung ?

>  
> [mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{b}[/mm]
>  
> Hier sieht man, daß [mm]\vec{b}[/mm] ein Eigenvektor ist,
>  und [mm]\vec{a}[/mm] ein Vektor, der durch die Matrix
> [mm]\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)[/mm]
> auf den Vektor [mm]\vec{b}[/mm] abgebildet wird.
>  
> D.h. [mm]\vec{b}[/mm] ist ein Eigenvektor bzw. Hauptvektor der Stufe
> 1.
>  
> [mm]\vec{a}[/mm] ist ein Hauptvektor der Stufe 2 und erfüllt
> die Gleichung
>  
> [mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)^{2}\vec{a}[/mm]
>  
>
> Gruss
>  MathePower

So richtig steige ich nicht durch :(

Aber Danke !


Bezug
                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> > Zunächst hast Du eine Lösung des obigen DGL-Systems:
>  >  
> > [mm]x_{l1}\left(t\right)=\pmat{1 \\ 0}*e^{t}[/mm]
>  >
>  Das ist soweit verständlich.
>
> > Um eine zweite linear abhängige Lösung zu finden,
>  >  wird der Ansatz so gewählt:
>  >  
> > [mm]x_{l2}\left(t\right)=\left(\vec{a}+\vec{b}*t\right)*e^{t}[/mm]
>  >

> Nehme ich mal so hin.  
> >
> > Einsetzen dieses Ansatzes in das DGL.-System liefert:
>  
> Was setzt du wo ein? Kannst du das noch erläutern?


Der Ansatz wird in die gegebene DGL eingesetzt.

> >  

> > [mm]\vec{b}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{a}[/mm]
>  
> Wie kommst du auf die folgende Umformung ?
> >  

> > [mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)\vec{b}[/mm]
>  


Diese Bedingungsgleichungen entstehen durch Koeffizientenvergleich.


> >  

> > Hier sieht man, daß [mm]\vec{b}[/mm] ein Eigenvektor ist,
>  >  und [mm]\vec{a}[/mm] ein Vektor, der durch die Matrix
> > [mm]\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)[/mm]
> > auf den Vektor [mm]\vec{b}[/mm] abgebildet wird.
>  >  
> > D.h. [mm]\vec{b}[/mm] ist ein Eigenvektor bzw. Hauptvektor der Stufe
> > 1.
>  >  
> > [mm]\vec{a}[/mm] ist ein Hauptvektor der Stufe 2 und erfüllt
> > die Gleichung
>  >  
> > [mm]\vec{0}=\left(\pmat{1 & 2 \\ 0 & 1}-\pmat{1 & 0 \\ 0 & 1}\right)^{2}\vec{a}[/mm]
>  
> >  

> >
> > Gruss
>  >  MathePower
>
> So richtig steige ich nicht durch :(
>  
> Aber Danke !
>  


Gruss
MathePower

Bezug
                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 So 08.07.2012
Autor: Ciotic

Also die gegebene DGL lautet:

[mm] \vec{y^{'}}(t)= \pmat{ 1 & 2 \\ 0 & 1 }\vec{y}(t) [/mm]

Wo genau kann ich


$ [mm] x_{l2}\left(t\right)=\left(\vec{a}+\vec{b}\cdot{}t\right)\cdot{}e^{t} [/mm] $

nun einsetzen?

Bezug
                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Also die gegebene DGL lautet:
>
> [mm]\vec{y^{'}}(t)= \pmat{ 1 & 2 \\ 0 & 1 }\vec{y}(t)[/mm]
>  
> Wo genau kann ich
>
>
> [mm]x_{l2}\left(t\right)=\left(\vec{a}+\vec{b}\cdot{}t\right)\cdot{}e^{t}[/mm]
>  
> nun einsetzen?  


Bevor Du Dich an das Einsetzen machst, definiere

[mm]A:=\pmat{1 & 2 \\ 0 & 1}[/mm]

Das macht die weitere Rechnung übersichtlicher.


Gruss
MathePower

Bezug
                                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 So 08.07.2012
Autor: Ciotic

Scheinbar stehe ich total auf dem Schlauch.

$ [mm] \vec{y^{'}}(t)= A\vec{y}(t) [/mm] $

Hilft mir das jetzt weiter?

Bezug
                                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Scheinbar stehe ich total auf dem Schlauch.
>
> [mm]\vec{y^{'}}(t)= A\vec{y}(t)[/mm]
>  
> Hilft mir das jetzt weiter?  


Ja, wie schon geschrieben,
das macht die weitere Rechnung übersichtlicher.


Gruss
MathePower

Bezug
                                                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 So 08.07.2012
Autor: Ciotic

Und wie gehe ich nun weiter vor? Ich weiß nicht, wie ich die DGL und deinen Ansatz kombinieren soll.

Danke!

Bezug
                                                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Und wie gehe ich nun weiter vor? Ich weiß nicht, wie ich
> die DGL und deinen Ansatz kombinieren soll.
>


Ausgehend von [mm] \vec{y^{'}}(t)= A\vec{y}(t)[/mm]

Setze für [mm] \vec{y}\left(t\right)=\left(\vec{a}+\vec{b}\cdot{}t\right)\cdot{}e^{t} [/mm] ein.


> Danke!


Gruss
MathePower

Bezug
                                                                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 So 08.07.2012
Autor: Ciotic

Alles klar, damit ergibt sich:

$ [mm] \vec{y^{'}}(t)= A\left(\vec{a}+\vec{b}\cdot{}t\right)\cdot{}e^{t} [/mm] $

Mir aber noch schleierhaft, wie man dann das [mm] e^{t} [/mm] weg bekommt und weiter umformt.



Bezug
                                                                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Alles klar, damit ergibt sich:
>  
> [mm]\vec{y^{'}}(t)= A\left(\vec{a}+\vec{b}\cdot{}t\right)\cdot{}e^{t}[/mm]
>  
> Mir aber noch schleierhaft, wie man dann das [mm]e^{t}[/mm] weg
> bekommt und weiter umformt.
>


Zunächst musst Du noch die Ableitung  [mm]\vec{y^{'}}(t)[/mm] bilden.


Gruss
MathePower

Bezug
                                                                                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 08.07.2012
Autor: Ciotic

Dann komme ich auf :

[mm] $\vec{b}+\vec{a}+\vec{b}t=A*(\vec{a}+\vec{b}t)$ [/mm]

Das forme ich um:

[mm] $\vec{b}=A\vec{a}+A\vec{b}t-\vec{a}-\vec{b}t$ [/mm]

Doch wie forme ich nun weiter um?

Danke !

Bezug
                                                                                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 08.07.2012
Autor: MathePower

Hallo Ciotic,

> Dann komme ich auf :
>  
> [mm]\vec{b}+\vec{a}+\vec{b}t=A*(\vec{a}+\vec{b}t)[/mm]
>  
> Das forme ich um:
>  
> [mm]\vec{b}=A\vec{a}+A\vec{b}t-\vec{a}-\vec{b}t[/mm]
>  
> Doch wie forme ich nun weiter um?
>  


Jetzt führst Du einen Koeffizientenvergleich durch.

Vergleiche dazu die Koeffizienten vor [mm]t^{0}[/mm] bzw. [mm]t^{1}[/mm]
auf beiden Seiten der Gleichung.


> Danke !


Gruss
MathePower

Bezug
                                                                                                                
Bezug
AWP Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 So 08.07.2012
Autor: Ciotic

Dabei komme ich auf

[mm] \vec{b}=A\vec{b} [/mm] und [mm] \vec{a}=A\vec{a}. [/mm] Korrekt?

Muss ich das dann wieder in die Gleichung für [mm] \vec{b} [/mm] einsetzen?

Bezug
                                                                                                                        
Bezug
AWP Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 So 08.07.2012
Autor: teo


> Dabei komme ich auf
>
> [mm]\vec{b}=A\vec{b}[/mm] und [mm]\vec{a}=A\vec{a}.[/mm] Korrekt?
>
> Muss ich das dann wieder in die Gleichung für [mm]\vec{b}[/mm]
> einsetzen?  

Hallo, vergleiche doch nochmal die erste Antwort von Mathepower.

Es muss [mm]\vec{0}=A\vec{b}[/mm] und [mm]\vec{b}=A\vec{a} [/mm] gelten.

[mm] \vec{b} [/mm] ist dabei der Eigenvektor den du bereits hast, um [mm] \vec{a} [/mm] zu erhalten musst du nur noch das Gleichungssystem [mm] A\vec{a}=\vec{b} [/mm] lösen.

Bezug
                
Bezug
AWP Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Fr 13.07.2012
Autor: Ciotic

Sorry für die späte Antwort. Habe es mittlerweile verstanden, hatte einen Fehler beim Koeffizientenvergleich.

Danke Euch !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de