www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - A^{-1/2} berechnen ?
A^{-1/2} berechnen ? < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A^{-1/2} berechnen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Fr 24.04.2009
Autor: Tobus

Aufgabe
Gegeben sind die Vektoren [mm] b1=\vektor{0 \\ 0 \\ 1 \\ 0}, b2=\vektor{1 \\ 0 \\ 0 \\ -1}, b3=\vektor{0 \\ -1 \\ 0 \\ 1} [/mm]

a) Bestimmen sie [mm] A^{-0,5} [/mm] für die Matrix A, deren Elemente durch [mm] A_{ij}=bi*bj [/mm] i,j [mm] \in [/mm] {1,2,3} gegeben sind

b) Zeige dass die Vektoren [mm] b_{i}=\summe_{j=1}^{3} (A^{-0,5}_{ij} [/mm] * [mm] b_{j} [/mm] i [mm] \in [/mm] {1,2,3}

Hallo,
das erste Problem ist ich hab keine Ahnung wie ich [mm] A^{-0,5} [/mm] berechnen kann.
Vllt könnt ihr mir ja da helfen ?

DANKE

        
Bezug
A^{-1/2} berechnen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Fr 24.04.2009
Autor: felixf

Hallo!

> Gegeben sind die Vektoren [mm]b1=\vektor{0 \\ 0 \\ 1 \\ 0}, b2=\vektor{1 \\ 0 \\ 0 \\ -1}, b3=\vektor{0 \\ -1 \\ 0 \\ 1}[/mm]
>  
> a) Bestimmen sie [mm]A^{-0,5}[/mm] für die Matrix A, deren Elemente
> durch [mm]A_{ij}=bi*bj[/mm] i,j [mm]\in[/mm] {1,2,3} gegeben sind
>  
> b) Zeige dass die Vektoren [mm]b_{i}=\summe_{j=1}^{3} (A^{-0,5}_{ij}[/mm]
> * [mm]b_{j}[/mm] i [mm]\in[/mm] {1,2,3}
>
>  Hallo,
>  das erste Problem ist ich hab keine Ahnung wie ich
> [mm]A^{-0,5}[/mm] berechnen kann.
>  Vllt könnt ihr mir ja da helfen ?

Nun:

1) Matrix $A$ berechnen

2) Eigenwerte und Eigenvektoren berechnen

3) Matrix diagonalisieren

4) Ist $D$ die Diagonalmatrix, dann berechne [mm] $D^{-0.5}$ [/mm] -- weisst du wie das geht?

5) Transformiere das Ergebnis zurueck mit der Transformationsmatrix vom Diagonalisieren

LG Felix


Bezug
                
Bezug
A^{-1/2} berechnen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 26.04.2009
Autor: Tobus

Hallo,
vielen Dank schonmal für die Antwort, hat mir ziemlich geholfen.
Nun habe ich noch ne Frage, laut Lösung ist die Matrix A eine 3x3. Wie komme ich auf die ?

DANKE

Bezug
                        
Bezug
A^{-1/2} berechnen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 26.04.2009
Autor: leduart

Hallo
die [mm] a_{ij} [/mm] sind doch in der aufgabe gegeben, du musst nur ein paar skalarprodukte ausrechnen.
gruss leduart

Bezug
                                
Bezug
A^{-1/2} berechnen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 So 26.04.2009
Autor: Tobus

Ahh ok dann hier mal was:

1) Matrix A berechnen
[mm] \pmat{ 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 } [/mm]

2) Eigenwerte und Eigenvektoren berechnen
Eigenwerte: (1, 1, 3)

3) Matrix diagonalisieren
Die Diagonalmatrix ist doch die Einheitsmatrix mit den Eigenwerten, richtig ?
D = [mm] \pmat{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3} [/mm]

4) Ist D die Diagonalmatrix, dann berechne $ [mm] D^{-0.5} [/mm] $ -- weisst du wie das geht?

Hier weiß ich nicht mehr weiter

Bezug
                                        
Bezug
A^{-1/2} berechnen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 02:35 Mo 27.04.2009
Autor: felixf

Hallo!

> 3) Matrix diagonalisieren
>  Die Diagonalmatrix ist doch die Einheitsmatrix mit den
> Eigenwerten, richtig ?
>  D = [mm]\pmat{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3}[/mm]
>  
> 4) Ist D die Diagonalmatrix, dann berechne [mm]D^{-0.5}[/mm] --
> weisst du wie das geht?

Hast du dir mal Angelas Antwort durchgelesen? Versuche erstmal eine Matrix $B$ zu finden mit [mm] $B^2 [/mm] = D$. Und dann bestimme [mm] $B^{-1}$. [/mm]

Tipp: nimm an dass $B$ eine Diagonalmatrix ist.

LG Felix


Bezug
                                                
Bezug
A^{-1/2} berechnen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Mo 27.04.2009
Autor: Tobus

Danke habs ;)

Bezug
        
Bezug
A^{-1/2} berechnen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Fr 24.04.2009
Autor: angela.h.b.


> a) Bestimmen sie [mm]A^{-0,5}[/mm] für die Matrix A, deren Elemente
> durch [mm]A_{ij}=bi*bj[/mm] i,j [mm]\in[/mm] {1,2,3} gegeben sind

>  das erste Problem ist ich hab keine Ahnung wie ich
> [mm]A^{-0,5}[/mm] berechnen kann.

Hallo,

zunächst einmal muß man sich klarmachen, was mit [mm] A^{-0,5} [/mm] gemeint ist:

das Inverse von [mm] A^{0,5}. [/mm] Man kann das also nur berechnen, wenn [mm] A^{0.5} [/mm] ein inverses hat.

Dann muß man drüber nachdenken, was [mm] A^{0,5} [/mm] sein soll: das ist die Matrix, die mit  sich selbst multipliziert A ergibt.

Wire man sie findet, hat Dir Felix erklärt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de