www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - A zwischen zwei Graphen
A zwischen zwei Graphen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A zwischen zwei Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Do 07.10.2004
Autor: prodigy

Hallo! Habe letzte Mathestunde leider nicht aufgepasst :(

Wie berechne ich den Inhalt der von den Graphen von f und g eingeschlossenen Fläche bei dieser simplen Funktion: f(x)=x² !

g(x) ist -x + 2

Schnittpunkte ausrechnen, ok:

x²=-x+2 | +x | -2
x²+x-2=0

und daaaannn ?

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
A zwischen zwei Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 07.10.2004
Autor: deniz

Wie ist die Funktion g? Du musst die Funktion f in einem bestimmten Intervall integrieren um die Fläche auszurechnen, die zwischen f und x Achse liegt. Das gleiche machst du mit g und dann ziehst du die Fläche von der Funktion, die näher an der x-Achse liegt von der anderen Fläche ab.
Wenn sich die Funktionen schneiden, ist wahrscheinlich die Fläche die zwischen den Schnittpunkten liegt gefragt.
Noch Fragen?

Bezug
        
Bezug
A zwischen zwei Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Do 07.10.2004
Autor: KaiAhnung

Hallo

> Wie berechne ich den Inhalt der von den Graphen von f und g
> eingeschlossenen Fläche bei dieser simplen Funktion:
> f(x)=x²

Wie lautet denn die Funktionsgleichung von [mm]g[/mm]?
Allgemein kann man das folgendermaßen machen:
Man bildet die Differenz von [mm]f(x)[/mm] und [mm]g(x)[/mm]
[mm]d(x) = f(x)-g(x)[/mm]
Man findet die Nullstellen von [mm]d(x)[/mm] (das sind die Stellen, an denen [mm]f[/mm] und [mm]g[/mm] sich schneiden).
Man integriert die Funktion [mm]d(x)[/mm] jeweils von jeder Nullstelle zur nächstgrößeren ([mm]\int \limits_{x_1}^{x_2}{d(x)dx}[/mm] wobei [mm]x_1,x_2[/mm] die Nullstellen sind). Die Beträge dieser Integrale (das Ergebnis könnte ja negativ sein) addiert man dann und erhält die von [mm]f[/mm] und [mm]g[/mm] eingeschlossene Fläche.

Hilft dir das weiter?

MfG
Jan

Bezug
        
Bezug
A zwischen zwei Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Do 07.10.2004
Autor: prodigy

Hallo :) Habe g(x) jetzt hinzugefügt! Hatte ich vergessen. Sorry

Ich weiß, dass ich die beiden Funktionen gleichsetzen muss, aber dann???

Ich weiß schon warum ich nur Mathe Grundkurs habe :P

Bezug
        
Bezug
A zwischen zwei Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Do 07.10.2004
Autor: Micha

Hallo prodigy!
> Hallo! Habe letzte Mathestunde leider nicht aufgepasst :(
>  
> Wie berechne ich den Inhalt der von den Graphen von f und g
> eingeschlossenen Fläche bei dieser simplen Funktion:
> f(x)=x² !
>  
> g(x) ist -x + 2
>  
> Schnittpunkte ausrechnen, ok:
>  
> x²=-x+2 | +x | -2
>  x²+x-2=0

p-q-Formel: [mm] $x_{1,2} [/mm] = [mm] -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} -q}$ [/mm]

also: [mm] $x_{1,2} [/mm] = [mm] -\frac{1}{2} \pm \sqrt{\frac{1^2}{4} +2}$ [/mm]
[mm] $\gdw x_{1,2} [/mm] = [mm] -\frac{1}{2} \pm \sqrt{2,25}$ [/mm]
[mm] $\gdw x_{1,2} [/mm] = -0,5 [mm] \pm [/mm] 1,5$
[mm] $x_1 [/mm] = 1$ und $ [mm] x_2 [/mm] = -2$
Damit hast du die 2 Schnittpunkte, und du weisst, von -2 bis 1 sind die Funktionswerte von f kleiner als von g ( Das kannst du mit einer Teststelle zwischen den schnittpunkten feststellen).

Damit ist die Fläche zwischen f und g:

[mm] A = \integral_{-2}^{1} {g(x)-f(x) dx}= \integral_{-2}^{1} {(-x+2-x^2) dx}= \integral_{-2}^{1} {(-x^2-x+2) dx}= \left[-\frac{1}{3}x^3-\frac{1}{2}x^2+2x \right]^1_{-2}=-\frac{1}{3}-\frac{1}{2}+2-\frac{8}{3}+2+4=-\frac{9}{3}+8-\frac{1}{2} = 4,5[/mm]

Ich hoffe das genügt dir als Erklärung. ;-)

Gruß Micha

Bezug
                
Bezug
A zwischen zwei Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:54 Do 07.10.2004
Autor: prodigy

Ja, das reicht mir in der Tat :) Vielen, vielen Dank! Du bist der Beste *g*

Gute Nacht

Tobi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de