www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Abb. auf Gruppe bijektiv?
Abb. auf Gruppe bijektiv? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abb. auf Gruppe bijektiv?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 14.01.2008
Autor: then3210

Aufgabe
Es sei [mm] (G,\circ [/mm] )eine Gruppe und a [mm] \in [/mm] G. Betrachten Sie die folgenden Abb. f: [mm] G\to [/mm] G und g: [mm] G\to [/mm] G, definiert durch die Vorschriften f(x):= [mm] x\circ [/mm] a ung g(x):= x^-1.

(a)Zeigen Sie, dass f und g Bijektionen sind.
(b)Unter welchen Bedingungen sind f und g Homomorphismen?

(a) Bei g denke ich an das mult. Inverse welches doch eindeutig ist also ist g bijektiv aber bei f weiß ich net weiter.

(b) ??? Vielleicht wenn ich a verstanden habe.


PS Nur so am Rande....war heute kurz das Thema....was sind Signaturen von Strukturen?


        
Bezug
Abb. auf Gruppe bijektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Di 15.01.2008
Autor: andreas

hi

bezeichne für $a [mm] \in [/mm] G$ die abbildung [mm] $f_a(x) [/mm] = x [mm] \circ [/mm] a$ (damit wird ausgedrückt, dass du verschiedene $a$'s auch verschiedene abbildungen $f$ erhälst). berechne dann mal [mm] $f_a \circ f_{a^{-1}}$ [/mm] und [mm] $f_{a^{-1}} \circ f_a$. [/mm] lässt sich damit vielleicht etwas über die umkehrabbildung von [mm] $f_a$ [/mm] aussagen und folgt daraus, dass [mm] $f_a$ [/mm] bijektiv ist?
wenn dir dieses kriterium nicht geläufig ist, kann man die bijektivität direkt zeigen: sei [mm] $f_a(x) [/mm] = [mm] f_a(x')$, [/mm] also $x [mm] \circ [/mm] a = x' [mm] \circ [/mm] a$. was erhält man aus dieser gleichung wenn man von rechts mit [mm] $a^{-1}$ [/mm] multipliziert (ist das eine äquivalenzumformung?)?
für jedes $y [mm] \in [/mm] G$ lässt sich direkt ein urbild angeben, das heißt ein $x [mm] \in [/mm] G$ mit [mm] $f_a(x) [/mm] = y$, womit die surjektivität gezeigt ist. probiere einfach mal mit ein paar naheliegenden möglichkeiten herum.

zur bijektivität voni $g$ berechne einfach mal $g [mm] \circ [/mm] g$. was ergibt sich? das die eindeutigkeit des multiplikativ inversen da rein spielt ist schon richtig.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de