www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abb(R,R) als Vektor
Abb(R,R) als Vektor < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abb(R,R) als Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 So 20.11.2011
Autor: oktollber

Aufgabe
Seien [mm] f_{1},...,f_{n} \in Abb(\IR,\IR) [/mm] und [mm] t_{1},...,t_{n} \in \IR, [/mm] so dass die Vektoren [mm] v_{1},...,v_{n} \in \IR^{n} [/mm] mit
[mm] v_{j} [/mm] = [mm] \pmat{ f_{1}(t_{1}) \\ \vdots \\ f_{j}(t_{n}) }, [/mm] j = 1,..., n
linear unabhängig sind. Zeige, dass dann auch [mm] f_{1},...,f_{n} [/mm] linear unabhängig sind.

Hallo Community,

also zu meinem Gedankengang. Ich interpretiere mal als "lineare Unabhängigkeit", dass ich [mm] x*f_{1} [/mm] = [mm] y*f_{2} [/mm] mit x,y [mm] \in \IR [/mm] nur mit x,y = 0
lösen lässt. Soweit richtig? Dann klingt die Aussage für mich auch logisch.

Aber wie setzt man da einen Beweis an? Ich wäre für einen Ansatz dankbar.

mfg
oktollber

        
Bezug
Abb(R,R) als Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 20.11.2011
Autor: felixf

Moin oktollber!

> Seien [mm]f_{1},...,f_{n} \in Abb(\IR,\IR)[/mm] und [mm]t_{1},...,t_{n} \in \IR,[/mm]
> so dass die Vektoren [mm]v_{1},...,v_{n} \in \IR^{n}[/mm] mit
>  [mm]v_{j}[/mm] = [mm]\pmat{ f_{1}(t_{1}) \\ \vdots \\ f_{j}(t_{n}) },[/mm]
> j = 1,..., n
>  linear unabhängig sind. Zeige, dass dann auch
> [mm]f_{1},...,f_{n}[/mm] linear unabhängig sind.
>  
> also zu meinem Gedankengang. Ich interpretiere mal als
> "lineare Unabhängigkeit", dass ich [mm]x*f_{1}[/mm] = [mm]y*f_{2}[/mm] mit
> x,y [mm]\in \IR[/mm] nur mit x,y = 0
>  lösen lässt. Soweit richtig? Dann klingt die Aussage
> für mich auch logisch.

Im Fall von $n = 2$ ja. Allgemein musst du zeigen: gibt es [mm] $\mu_1, \dots, \mu_n \in \IR$ [/mm] mit [mm] $\sum_{i=1}^n \mu_i f_i [/mm] = 0$, so folgt [mm] $\mu_1 [/mm] = [mm] \dots [/mm] = [mm] \mu_n [/mm] = 0$.

> Aber wie setzt man da einen Beweis an? Ich wäre für einen
> Ansatz dankbar.

Was passiert, wenn du in die Gleichung [mm] $\sum_{i=1}^n \mu_i f_i [/mm] = 0$, die auf beiden Seiten eine Funktion [mm] $\IR \to \IR$ [/mm] stehen hast, ein [mm] $t_j$ [/mm] einsetzt? Was erhaelst du?

LG Felix


Bezug
                
Bezug
Abb(R,R) als Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 So 20.11.2011
Autor: oktollber


> Im Fall von [mm]n = 2[/mm] ja. Allgemein musst du zeigen: gibt es
> [mm]\mu_1, \dots, \mu_n \in \IR[/mm] mit [mm]\sum_{i=1}^n \mu_i f_i = 0[/mm],
> so folgt [mm]\mu_1 = \dots = \mu_n = 0[/mm].

Könnten nicht auch alle Funktionswerte 0 sein und somit alle Vektoren identisch?

> Was passiert, wenn du in die Gleichung [mm]\sum_{i=1}^n \mu_i f_i = 0[/mm],
> die auf beiden Seiten eine Funktion [mm]\IR \to \IR[/mm] stehen
> hast, ein [mm]t_j[/mm] einsetzt? Was erhaelst du?

Ich versteh nicht, was du mit beiden Seiten meinst.

Aber als Vorraussetzung nehm ich doch:
[mm] \mu_1, \dots, \mu_n \in \IR [/mm]  mit  [mm] \sum_{i=1}^n \mu_i v_i [/mm] = 0

Das kann man doch dann umformen in.

$ [mm] \mu_1, \dots, \mu_n \in \IR [/mm] $ mit $ [mm] \sum_{i=1}^n \mu_i [/mm]  $ [mm] \pmat{ f_{i}(t_{1}) \\ \vdots \\ f_{i}(t_{n}) } [/mm] = 0

Dann:


$ [mm] \mu_1, \dots, \mu_n \in \IR [/mm] $ mit $ [mm] \sum_{i=1}^n [/mm]  $ [mm] \pmat{ \mu_i*f_{i}(t_{1}) \\ \vdots \\ \mu_i*f_{i}(t_{n}) } [/mm] = 0

Aber wie form ich das nun weiter um?

mfg
oktollber


Bezug
                        
Bezug
Abb(R,R) als Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 20.11.2011
Autor: angela.h.b.


> > Im Fall von [mm]n = 2[/mm] ja. Allgemein musst du zeigen: gibt es
> > [mm]\mu_1, \dots, \mu_n \in \IR[/mm] mit [mm]\sum_{i=1}^n \mu_i f_i = 0[/mm],
> > so folgt [mm]\mu_1 = \dots = \mu_n = 0[/mm].
>  
> Könnten nicht auch alle Funktionswerte 0 sein und somit
> alle Vektoren identisch?

Hallo,

nein, das würde der linearen Unabhängigkeit der [mm] v_i [/mm] widersprechen.

>  
> > Was passiert, wenn du in die Gleichung [mm]\sum_{i=1}^n \mu_i f_i = 0[/mm],
> > die auf beiden Seiten eine Funktion [mm]\IR \to \IR[/mm] stehen
> > hast, ein [mm]t_j[/mm] einsetzt? Was erhaelst du?
>  
> Ich versteh nicht, was du mit beiden Seiten meinst.

Na, rechts und links vom Gleichheitszeichen.
Links steht eine Funktion, und die Null, die rechts steht, ist die Abkürzung für "Nullfunktion".

>  
> Aber als Vorraussetzung nehm ich doch:
>   [mm]\mu_1, \dots, \mu_n \in \IR[/mm]  mit  [mm]\sum_{i=1}^n \mu_i v_i[/mm] = 0

Das ist die Voraussetzung, unter der Du die lineare Unabhängigkeit der [mm] f_i [/mm] zeigen sollst.

>
> Das kann man doch dann umformen in.
>  
> [mm]\mu_1, \dots, \mu_n \in \IR[/mm] mit [mm]\sum_{i=1}^n \mu_i [/mm] [mm]\pmat{ f_{i}(t_{1}) \\ \vdots \\ f_{i}(t_{n}) }[/mm] = 0

Ja, aber das ist nichts Neues, das ist einfach die Voraussetzung.

Du aber willst wissen, ob aus [mm] \mu_1f_1+...+\mu_nf_n= [/mm] Nullfunktion folgt, daß die [mm] \mu_i [/mm] alle =0 sind.

Aber ich habe im anderen Thread zuvor schon ausführlicher geantwortet, so daß die Diskussion vielleicht dort fortgesetzt werden sollte.

Gruß v. Angela


>
> Dann:
>  
>
> [mm]\mu_1, \dots, \mu_n \in \IR[/mm] mit [mm]\sum_{i=1}^n [/mm] [mm]\pmat{ \mu_i*f_{i}(t_{1}) \\ \vdots \\ \mu_i*f_{i}(t_{n}) }[/mm]
> = 0
>  
> Aber wie form ich das nun weiter um?
>  
> mfg
>  oktollber
>  


Bezug
        
Bezug
Abb(R,R) als Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 So 20.11.2011
Autor: angela.h.b.

Hallo,

die Aufgabe wird gerade auch hier bearbeitet.
Vielleicht kannst Du Dich dort ein wenig inspirieren lassen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de