www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildung
Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Abbildung x\mapsto L(x)= .....
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 21.05.2007
Autor: daniel_xy

Aufgabe
Stellen Sie die Abbildung

L:[mm]f(n)=\left\{\begin{matrix} \IR^3 \to \IR^3 \\ x \mapsto L(x) = y \times x \end{matrix}\right.[/mm]   , wobei  y= [mm] \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} [/mm]

durch eine Matrix Y dar:  L(x) = Y x für alle [mm]x \in \IR^3[/mm]
Ist die Abbildung [mm]L[/mm] invertierbar? Begründen Sie Ihre Antwort anhand der Matrix Y.

Hallo Leute,

Ich habe absolut keine Plan was der Prof hier von mir will :-(...
Ich weiß nicht mal wie ich vorgehe wenn ich etwas "abbilde auf"...

Ich würde mich sehr freuen wenn mir jemand helfen könnte.
Ich freue mich über jede Antwort!

Liebe Grüße Daniel


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 21.05.2007
Autor: Event_Horizon

Hallo!

"Abbilden auf" bedeutet einfach, daß z.B. ein x in eine Funktion hineingestekt wird, und du ein Ergebnis herausbekommst.


Hier sollst du erstmal [mm] $\vec [/mm] y [mm] \times \vec [/mm] x$ ausrechnen. Setze am besten die Zahlen für y schonmal ein. Dann kannst du die Matrix eigentlich schon ablesen:

Schau dir die erste Komponente an. Sie besteht aus [mm] x_1, x_2, x_3 [/mm]  (Naja, in diesem Beispiel gibts kein [mm] x_1 [/mm] in der ersten Komponente...)

Die Koeffizienten vor [mm] x_1, x_2, x_3 [/mm] sind schon die Zahlen, die in der ersten Zeile der Matrix stehen.

Mach das gleiche mit den anderen beiden zeilen, und du bist fertig.

Warum das so ist, solltest du dir mal genauer anschauen, hierzu ist es am besten, wenn du dir das ganze rückwärts anschaust, also deine fertige Matrix mit [mm] \vec{x} [/mm] multiplizierst.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de