www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildung
Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Bild Im(f)
Status: (Frage) beantwortet Status 
Datum: 12:27 So 16.08.2009
Autor: Pacapear

Hallo zusammen!

Ich habe eine Frage zum Bild $ Im(f) $ einer Abbildung $f$.

Also das sind doch alle Punkte des Wertebereiches $N$ (bei $ f:M [mm] \to [/mm] N $ ), die Ziel der Abbildung $f$ sind, oder?

Also $ Im(f) [mm] \subset [/mm] N $, richtig?

Nun hab ich hier ein Beispiel:

$ f: [mm] \IR \to \IR [/mm] $, $ x [mm] \mapsto x^3-x [/mm] $

Hier wird nun das Bild angegeben als $ Im(f) = [mm] \IR [/mm] $.

Wie komme ich darauf?

Woher weiß ich, dass die Funktionswerte $ f(x) $ (um die geht es doch, oder?) alle Werte aus [mm] \IR [/mm] annehmen?

Das Argument dafür war in dem Beispiel, dass der Graph [mm] \Gamma_f [/mm] von $f$ Teilmenge des [mm] \IR^2 [/mm] ist, aber das versteh ich irgendwie nicht.

LG, Nadine

        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 So 16.08.2009
Autor: schachuzipus

Hallo Nadine,

> Hallo zusammen!
>  
> Ich habe eine Frage zum Bild [mm]Im(f)[/mm] einer Abbildung [mm]f[/mm].
>  
> Also das sind doch alle Punkte des Wertebereiches [mm]N[/mm] (bei
> [mm]f:M \to N[/mm] ), die Ziel der Abbildung [mm]f[/mm] sind, oder?
>  
> Also [mm]Im(f) \subset N [/mm], richtig?

[daumenhoch]

>  
> Nun hab ich hier ein Beispiel:
>  
> [mm]f: \IR \to \IR [/mm], [mm]x \mapsto x^3-x[/mm]
>  
> Hier wird nun das Bild angegeben als [mm]Im(f) = \IR [/mm]. [ok]

Nun, die Funktion ist als Polynom sicher stetig, betrachte mal [mm] $\lim\limits_{x\to\pm\infty}f(x)$ [/mm] ...

Was folgt dann mit dem Zwischenwertsatz für jedes geschlossene Intervall $[a,b]$?


>  
> Wie komme ich darauf?
>  
> Woher weiß ich, dass die Funktionswerte [mm]f(x)[/mm] (um die geht
> es doch, oder?) alle Werte aus [mm]\IR[/mm] annehmen?

s.o.

>  
> Das Argument dafür war in dem Beispiel, dass der Graph
> [mm]\Gamma_f[/mm] von [mm]f[/mm] Teilmenge des [mm]\IR^2[/mm] ist, aber das versteh
> ich irgendwie nicht.
>  
> LG, Nadine

Gruß

schachuzipus

Bezug
                
Bezug
Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 So 16.08.2009
Autor: Pacapear

Hallo schachuzipus!

> Nun, die Funktion ist als Polynom sicher stetig, betrachte
> mal [mm]\lim\limits_{x\to\pm\infty}f(x)[/mm] ...
>  
> Was folgt dann mit dem Zwischenwertsatz für jedes
> geschlossene Intervall [mm][a,b][/mm]?

Stetigkeit und Zwischenwertsatz hatten wir noch nicht.
Klingt auch irgendwie mehr nach Analysis.
Das hier stammt etwa aus der dritten LA1-Vorlesung.

Aber ich weiß aus der Schule, dass ein Polynom für [mm] x\to\infty [/mm] nach [mm] \pm\infty [/mm] geht und dass für $ x [mm] \to -\infty [/mm] $ das Polynom auch nach [mm] \pm\infty [/mm] geht.

Und wenn die Funktionswerte für alle $x$ von $ [mm] -\infty [/mm] $ nach $ [mm] +\infty [/mm] $ gehen, heißt dass dann, das zwischen $ [mm] -\infty [/mm] $ und $ [mm] +\infty [/mm] $ alle Funktionswerte angenommen werden (weil ich den Graphen durchzeichnen kann, das ist doch stetig, oder?)?

Und damit ist das Bild dann ganz [mm] \IR [/mm] ?

LG, Nadine

Bezug
                        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 So 16.08.2009
Autor: schachuzipus

Hallo nochmal,

> Hallo schachuzipus!
>  
> > Nun, die Funktion ist als Polynom sicher stetig, betrachte
> > mal [mm]\lim\limits_{x\to\pm\infty}f(x)[/mm] ...
>  >  
> > Was folgt dann mit dem Zwischenwertsatz für jedes
> > geschlossene Intervall [mm][a,b][/mm]?
>  
> Stetigkeit und Zwischenwertsatz hatten wir noch nicht.
>  Klingt auch irgendwie mehr nach Analysis.

Das ist es auch ;-)

Das kommt dann in den Ana1 - Grundlagen dran ...

>  Das hier stammt etwa aus der dritten LA1-Vorlesung.
>  
> Aber ich weiß aus der Schule, dass ein Polynom für
> [mm]x\to\infty[/mm] nach [mm]\pm\infty[/mm] geht und dass für [mm]x \to -\infty[/mm]
> das Polynom auch nach [mm]\pm\infty[/mm] geht. [ok]

Hier strebt $f(x)$ gegen [mm] $-\infty$ [/mm] für [mm] $x\to-\infty$ [/mm] und gegen [mm] $\infty$ [/mm] für [mm] $x\to\infty$ [/mm]

>  
> Und wenn die Funktionswerte für alle [mm]x[/mm] von [mm]-\infty[/mm] nach
> [mm]+\infty[/mm] gehen, heißt dass dann, das zwischen [mm]-\infty[/mm] und
> [mm]+\infty[/mm] alle Funktionswerte angenommen werden (weil ich den
> Graphen durchzeichnen kann, das ist doch stetig, oder?)?

Genau! Dass alle Funktionswerte "zwischen" [mm] $-\infty$ [/mm] und [mm] $\infty$ [/mm] angenommen werden, garantiert dir die Stetigkeit von f

>  
> Und damit ist das Bild dann ganz [mm]\IR[/mm] ?

So isses

>  
> LG, Nadine

Gruß

schachuzipus

Bezug
                                
Bezug
Abbildung: Verstanden!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Di 18.08.2009
Autor: Pacapear

Hallo schachuzipus!

Vielen Dank für deine Hilfe.

LG, Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de