www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung, Bild, Urbild
Abbildung, Bild, Urbild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung, Bild, Urbild: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 15:15 Sa 04.11.2006
Autor: wieZzZel

Aufgabe
Sei f: X --> Y eine beliebige Abb. [mm] (f\subset [/mm] X x Y), f(A) bezeichnet das Bild von A [mm] \subset [/mm] X und [mm] f^{-1}(A') [/mm] das Urbild A' [mm] \subset [/mm] Y.

a) Zeigen Sie: Aus A' [mm] \subset [/mm] B' [mm] \subset [/mm] Y  folgt [mm] f^{-1}(A') \subset f^{-1}(B'). [/mm]

b) Überprüfen Sie folgende Inklusionen

[mm] f(f^{-1}(A')) \supset [/mm] A'  (A' [mm] \subset [/mm] f(X) [mm] \subset [/mm] Y)
[mm] f^{-1}(f(A)) \supset [/mm] A   (A [mm] \subset f^{-1}(Y) \subset [/mm] X)

Prüfen Sie, ob die Gleichheit gilt (oder finden Sie je ein Gegenbeispiel)

c) Folgt aus [mm] f^{-1}(A') [/mm] = [mm] \emptyset [/mm] , dass A'= [mm] \emptyset [/mm] ?

d) Zeigen Sie [mm] f^{-1}(A' \cap [/mm] B') = [mm] f^{-1}(A') \cap f^{-1}(B'), [/mm] wenn f eine eindeutige Abb (Funktion) ist.
   Welche Beziehung gilt, wenn f  nicht eindeutig ist?

Hallo und ein schönes Wochenende allen zusammen.

(Bin neu im Forum und im Studium (1. Semester) und entschuldige mich für eventuelle formale Fehler)

Dies ist eine Teilaufgabe der Algebra Hausaufgaben, die mir Kopfzerbrechen bereitet, sehe kaum einen Ansatz für die Lösungen.

Würde mich freuen, wenn mir jemand dabei helfen könnte.

Hier meine Überlegungen:

a) für mich eine Verkettung, von daher logisch (sicher keine mathematisch tragbare Begründung)

b) die erste Fkt ist für mich die Identitätsabb. von A' und die Zweite von A, aber wie ich das jetzt begründe (im Falle, es stimmt überhaupt), weis ich nicht.

c) nein, da z.B. f(x)= [mm] \bruch{2x}{2-x} [/mm] für x=2 keine Lösung für f(x) ergibt, aber das x=2 ist.

d) sehe es auch (trügerisch) als selbstverständlich, dass das so ist.



Also vielen Dank an euch für eure Hilfe

Tschüß und ein schönes Wochenende

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Abbildung, Bild, Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 05.11.2006
Autor: wieZzZel

Hallo nochmal.

Falls ihr nicht alles wisst, wäre mir schon mit wenigen Tipps geholfen (denke ich mal).

Danke und Tschüß

Bezug
        
Bezug
Abbildung, Bild, Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 06.11.2006
Autor: DaMenge

Hi,

du solltest dich dringend mit dem Begriffen Bild und Urbild von Abbildungen beschaeftigen.
Also es handelt sich hier nicht um bijektive Funktionen oder sowas, sondern Abbildungen im allgemeinen.
Also ein element x aus X hat zwar ein eindeutiges Bild f(x) aber nicht jedes Element y aus Y hat ein eindeutiges (oder ueberhaupt ein) Urbild [mm] f^{-1}(y) [/mm] ..


zu a) setze so an : sei y aus A' beliebig gewaehlt, damit ist y auch in B'.
jedes Element x aus [mm] f^{-1}(y) [/mm] hat als Bild natuerlich y und deshalb liegt x auch in [mm] f^{-1}(B') [/mm] ....

zu b) schau dir doch mal nicht-injektive Abbildungen an und mal dir mal ein paar Beispiele auf oder sowas..

zu c) deine Begruendung dafuer ist falsch, denn es geht darum, dass das Urbild eines Funktionswertes leer sein soll - also ein Funktionswert wird nicht getroffen (nicht-surjektiv) - der Funktionswert (bzw die Menge von Funktionswerten=A') muss deshalb natuerlich nicht leer sein, wenn die abbildung nicht-surjektiv ist.
(gegenbeispiel reicht als begruendung)

zu d) da steht nicht umsonst eine unterscheidung zw eindeutigen (bijektiven) Abbildungen und keinen - wo findest du denn einen Unterschied ?!?

viele gruesse
DaMenge

Bezug
                
Bezug
Abbildung, Bild, Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mo 06.11.2006
Autor: Sashman

Moin WieZzZel!

Schau dir vor der Bearbeitung der Teilaufgabe d) nocheinmal an, welche Abbildungen ihr als eindeutig gekennzeichnet habt.

Bei mir hies eindeutig nur surjektiv und nicht wie in obiger Antwort bijektiv.

eindeutig   (surjektiv):

Sei $f: [mm] A\to [/mm] B$ eine Abbildung:
Dann heist f eindeutig, wenn jedem [mm] $b\in [/mm] B$ ein Wert [mm] $a\in [/mm] A$ mit $f(a)=b$ zugewiesen werden kann.

[mm] $\forall b\in [/mm] B$  [mm] $\exists a\in [/mm] A$ : $b:=f(a)$

Injektiv:

Sei [mm] $f:A\to [/mm] B$ eine Abbildung. Dann heißt $f$ injektiv, wenn verschiedene Elemente von $A$ verschiedene Funktionswerte in $B$ haben.

[mm] $\forall a_1,a_2\in [/mm] A$ : [mm] $a_1\not= a_2\Rightarrow f(a_1)\not= f(a_2)$ [/mm]


eineindeutig oder umkehrbar eindeutig (bijektiv)

Sei [mm] $f:A\to [/mm] B$ eine Abbildung. dann heißt $f$ eineindeutig wen $f$ bijektiv ist. Also wenn $f$ injektiv und surjektiv ist.

Kann aber auch sein das ihr das anders definiert habt.

MfG
Sashman

Bezug
                        
Bezug
Abbildung, Bild, Urbild: stimmt !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Mo 06.11.2006
Autor: DaMenge

oha - danke fuer die ergaenzung !

hatte eben vor der Mittagspause doch glatt uebersehen, dass da gar nicht eineindeutig gemeint war^^

Aber dennoch bleibt die Fragestellung suggestiv und man sollte sich genau dazu mal gedanken machen...

viele Gruesse
DaMenge

Bezug
                                
Bezug
Abbildung, Bild, Urbild: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:08 Mo 06.11.2006
Autor: wieZzZel

Hallo und erstmal Danke für eure Hilfe.

Aber nochmal ein paar Fragen.

zu a) habe ein beliebiges y [mm] \in [/mm] A' und somit auch y [mm] \in [/mm] B' und auch y [mm] \in [/mm] Y, aber weiter???

b) helfen mir eure Ausführungen wenig weiter.

c) vielleicht mal ein Gegenbeispiel, weis zwar was gemeint ist, aber wie ich es ausdrücken soll (außer wie ich es oben hatte) weiß ich nicht

d) verstehe ich leider auch nicht.



Also helft mir mal bitte auf die Sprünge.

Danke und Tschüüß

Bezug
                                        
Bezug
Abbildung, Bild, Urbild: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de