www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung F invertierbar?
Abbildung F invertierbar? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung F invertierbar?: Idee
Status: (Frage) beantwortet Status 
Datum: 21:34 Mi 11.01.2006
Autor: mushroom

Aufgabe
Es sei F: [mm] \IR^3 \to \IR^3 [/mm] gegeben durch
F(v) = [mm] \frac{1}{5} \pmat{2 & -1 & -5 \\ -1 & 3 & 5 \\ 1 & 2 & 5}v [/mm]

Ist F invertierbar? Stellen Sie die Umkehrabbildung [mm] F^{-1} [/mm] als Matrixmultiplikation dar, falls F invertierbar ist.

Hallo,

also meine Idee ist zunächst einmal zu zeigen daß F invertierbar ist. Dazu habe ich von [mm] \pmat{\frac{2}{5} & -\frac{1}{5} & -1 & \vline & 0 \\ -\frac{1}{5} & \frac{3}{5} & 1 & \vline & 0\\ \frac{1}{5} & \frac{2}{5} & 1 & \vline & 0} [/mm]  mit dem Gaußalgorithmus die Lösungsmenge bestimmt, die ja der Kern von F ist. Ich habe also [mm] \IL [/mm] = [mm] \{ \vec{0} \} [/mm] = Ker F [mm] \Rightarrow \dim [/mm] (Ker F) = 0. Nach der Dimensionsformel ist dann [mm] \dim [/mm] (Bild F) = 3 = rang F. Da nun der Rang gleich der Anzahl der Zeilen  bzw. Spalten ist, ist F invertierbar.

Ist das soweit korrekt? Ich zweifle nämlich ein wenig, ob ich jetzt wirklich die Invertierbarkeit von F gezeigt habe und nicht nur von der Matrix.

Nun habe ich mit meiner Annahme die Umkehrabbildung [mm] F^{-1} [/mm] gebildet. Jedoch habe ich wieder nur mit der Matrix selbst wie oben gearbeitet.
Ich habe also [mm] F^{-1}(v) [/mm] = [mm] \frac{1}{5} \pmat{5 & -5 & 10 \\ 10 & 15 & -5 \\ -5 & -5 & 5}v [/mm]
Ist jetzt durch den Zusatz "... als Matrixmultiplikation" in der Aufgabenstellung danach gefragt, die inverse Matrix als Multiplikation der Elementarmatrizen darzustellen?

Gruß Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung F invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Do 12.01.2006
Autor: Stefan

Hallo!

Du hast alles richtig gemacht. Schließlich hast du [mm] $F^{-1}$ [/mm] als Matrizenmultiplikation dargestellt.

Und auch sonst argumentierst du richtig: Eine lineare Abbildung ist genau dann invertierbar, wenn die darstellende Matrix bezüglich irgendeiner Basis invertierbar ist, also vollen Rang hat.

Merke dir am besten die Zusammenhänge zwischen einer linearen Abbildung und deren Darstellungsmatrizen.

Du hast hier aber sogar über den Kern von $F$ direkt argumentiert, sehr schön!

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de